The location problem on graphs and the Helly problem
Diskretnaya Matematika, Tome 4 (1992) no. 4, pp. 67-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors constructed polynomial algorithms for the solution of the $p$-center problem and of the $r$-domination problem for graphs whose family of balls has the Helly property and whose intersection graph is triangulated. A characterization of this class of graphs is given as well.
@article{DM_1992_4_4_a6,
     author = {F. F. Dragan and K. F. Prisakar' and V. D. Chepoi},
     title = {The location problem on graphs and the {Helly} problem},
     journal = {Diskretnaya Matematika},
     pages = {67--73},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1992_4_4_a6/}
}
TY  - JOUR
AU  - F. F. Dragan
AU  - K. F. Prisakar'
AU  - V. D. Chepoi
TI  - The location problem on graphs and the Helly problem
JO  - Diskretnaya Matematika
PY  - 1992
SP  - 67
EP  - 73
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1992_4_4_a6/
LA  - ru
ID  - DM_1992_4_4_a6
ER  - 
%0 Journal Article
%A F. F. Dragan
%A K. F. Prisakar'
%A V. D. Chepoi
%T The location problem on graphs and the Helly problem
%J Diskretnaya Matematika
%D 1992
%P 67-73
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1992_4_4_a6/
%G ru
%F DM_1992_4_4_a6
F. F. Dragan; K. F. Prisakar'; V. D. Chepoi. The location problem on graphs and the Helly problem. Diskretnaya Matematika, Tome 4 (1992) no. 4, pp. 67-73. http://geodesic.mathdoc.fr/item/DM_1992_4_4_a6/