Characterization of linear and alinear quasigroups
Diskretnaya Matematika, Tome 4 (1992) no. 2, pp. 142-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

A quasigroup $(Q,\,\cdot\,)$ is said to be linear [alinear] if, for all $x,y\in Q$, $xy=\phi x+c+\psi y$, where $(Q,+)$ is some group, $\phi$ and $\psi$ are its automorphisms[antiautomorphisms], $c\in Q$. We prove that (primitive) linear [alinear] quasigroups are characterized by one identity in four variables.
@article{DM_1992_4_2_a16,
     author = {G. B. Belyavskaya and A. Kh. Tabarov},
     title = {Characterization of linear and alinear quasigroups},
     journal = {Diskretnaya Matematika},
     pages = {142--147},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1992_4_2_a16/}
}
TY  - JOUR
AU  - G. B. Belyavskaya
AU  - A. Kh. Tabarov
TI  - Characterization of linear and alinear quasigroups
JO  - Diskretnaya Matematika
PY  - 1992
SP  - 142
EP  - 147
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1992_4_2_a16/
LA  - ru
ID  - DM_1992_4_2_a16
ER  - 
%0 Journal Article
%A G. B. Belyavskaya
%A A. Kh. Tabarov
%T Characterization of linear and alinear quasigroups
%J Diskretnaya Matematika
%D 1992
%P 142-147
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1992_4_2_a16/
%G ru
%F DM_1992_4_2_a16
G. B. Belyavskaya; A. Kh. Tabarov. Characterization of linear and alinear quasigroups. Diskretnaya Matematika, Tome 4 (1992) no. 2, pp. 142-147. http://geodesic.mathdoc.fr/item/DM_1992_4_2_a16/