Enumeration of permutations with restricted positions and a~fixed number of cycles
Diskretnaya Matematika, Tome 4 (1992) no. 2, pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

A general algorithm for enumerating permutations with bounded positions and a fixed number of cycles has been obtained, apparently for the first time, with the help of the cyclic polynomial (or cycloment), introduced in the article, for a square matrix. The obtained algorithm can be used for parallel computation of the permanent and determinant of a matrix, as well. For Toeplitz matrices, a coefficients method for computing the cycloment has been developed. Besides, cycloments of some other matrices of order $n$ have been computed.
@article{DM_1992_4_2_a0,
     author = {V. S. Shevelev},
     title = {Enumeration of permutations with restricted positions and a~fixed number of cycles},
     journal = {Diskretnaya Matematika},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1992_4_2_a0/}
}
TY  - JOUR
AU  - V. S. Shevelev
TI  - Enumeration of permutations with restricted positions and a~fixed number of cycles
JO  - Diskretnaya Matematika
PY  - 1992
SP  - 3
EP  - 22
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1992_4_2_a0/
LA  - ru
ID  - DM_1992_4_2_a0
ER  - 
%0 Journal Article
%A V. S. Shevelev
%T Enumeration of permutations with restricted positions and a~fixed number of cycles
%J Diskretnaya Matematika
%D 1992
%P 3-22
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1992_4_2_a0/
%G ru
%F DM_1992_4_2_a0
V. S. Shevelev. Enumeration of permutations with restricted positions and a~fixed number of cycles. Diskretnaya Matematika, Tome 4 (1992) no. 2, pp. 3-22. http://geodesic.mathdoc.fr/item/DM_1992_4_2_a0/