The number and cardinalities of components of solutions of a discrete isoperimetric problem in the Hamming space
Diskretnaya Matematika, Tome 3 (1991) no. 4, pp. 28-46
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the problem of describing multicomponent subsets of the set $\{0, 1 \}^n$ having a minimal boundary in the Hamming metric. In the framework of this metric and of a natural understanding of components of a set, we establish 1) conditions for the existence of such subsets of a given cardinality with a given number of components; 2) attainable and other upper bounds for the number of components and their cardinalities depending on the cardinality of these subsets. In particular, we show that for $k\geq \sqrt{n-1}-1$ as $n\to \infty $ almost all points of such a subset of cardinality not less than $\sum^k_{i=0} (^n_i)$ are contained in a unique component.
@article{DM_1991_3_4_a4,
author = {B. E. Torosyan},
title = {The number and cardinalities of components of solutions of a~discrete isoperimetric problem in the {Hamming} space},
journal = {Diskretnaya Matematika},
pages = {28--46},
year = {1991},
volume = {3},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1991_3_4_a4/}
}
TY - JOUR AU - B. E. Torosyan TI - The number and cardinalities of components of solutions of a discrete isoperimetric problem in the Hamming space JO - Diskretnaya Matematika PY - 1991 SP - 28 EP - 46 VL - 3 IS - 4 UR - http://geodesic.mathdoc.fr/item/DM_1991_3_4_a4/ LA - ru ID - DM_1991_3_4_a4 ER -
B. E. Torosyan. The number and cardinalities of components of solutions of a discrete isoperimetric problem in the Hamming space. Diskretnaya Matematika, Tome 3 (1991) no. 4, pp. 28-46. http://geodesic.mathdoc.fr/item/DM_1991_3_4_a4/