Linear recurrent sequences over commutative rings
Diskretnaya Matematika, Tome 3 (1991) no. 4, pp. 105-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a Noetherian commutative ring $\mathbf R$ with a unity there exist Galois correspondences between the structure of finitely generated submodules of the $R[x]$-module $\mathcal L_\mathbf R$ of all linear recurrent sequences (LRS) over $R$ and the structure of unitary ideals (the annihilators of these modules) in $R[x]$. We prove that these correspondences are one-to-one if and only if $R$ is a quasi-Frobenius ring. In this case we show that the well-known relations between sums and intersections of modules and their annihilators for LRS over fields are preserved. In the case when $R$ is also a principal ideal ring we construct a system of generators for the module of all LRS that are annihilated by a given unitary ideal, and derive a test for the cyclicity of this module over the ring $R[x]$.
@article{DM_1991_3_4_a10,
     author = {A. A. Nechaev},
     title = {Linear recurrent sequences over commutative rings},
     journal = {Diskretnaya Matematika},
     pages = {105--127},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1991_3_4_a10/}
}
TY  - JOUR
AU  - A. A. Nechaev
TI  - Linear recurrent sequences over commutative rings
JO  - Diskretnaya Matematika
PY  - 1991
SP  - 105
EP  - 127
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1991_3_4_a10/
LA  - ru
ID  - DM_1991_3_4_a10
ER  - 
%0 Journal Article
%A A. A. Nechaev
%T Linear recurrent sequences over commutative rings
%J Diskretnaya Matematika
%D 1991
%P 105-127
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1991_3_4_a10/
%G ru
%F DM_1991_3_4_a10
A. A. Nechaev. Linear recurrent sequences over commutative rings. Diskretnaya Matematika, Tome 3 (1991) no. 4, pp. 105-127. http://geodesic.mathdoc.fr/item/DM_1991_3_4_a10/