An asymptotic formula for the number of correlation-immune Boolean functions of order~$k$
Diskretnaya Matematika, Tome 3 (1991) no. 2, pp. 25-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an asymptotic formula for the $N(n,k)$-number of correlation-immune Boolean $n$-variable functions of order $k$. We prove that as $n\to\infty$ $$ N(n,k)\sim\frac{2^{2^n}}{2^k\exp\biggl(\sum_{i=1}^k\Bigl(\ln\sqrt\frac{\pi}2+\Bigl(\frac n2-i\Bigr)\ln2\Bigr)\binom ni\biggr)}\,, $$ where $k$ is a fixed constant that does not depend on $n$ $(k=1,2,\dots$).
@article{DM_1991_3_2_a1,
     author = {O. V. Denisov},
     title = {An asymptotic formula for the number of correlation-immune {Boolean} functions of order~$k$},
     journal = {Diskretnaya Matematika},
     pages = {25--46},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1991_3_2_a1/}
}
TY  - JOUR
AU  - O. V. Denisov
TI  - An asymptotic formula for the number of correlation-immune Boolean functions of order~$k$
JO  - Diskretnaya Matematika
PY  - 1991
SP  - 25
EP  - 46
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1991_3_2_a1/
LA  - ru
ID  - DM_1991_3_2_a1
ER  - 
%0 Journal Article
%A O. V. Denisov
%T An asymptotic formula for the number of correlation-immune Boolean functions of order~$k$
%J Diskretnaya Matematika
%D 1991
%P 25-46
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1991_3_2_a1/
%G ru
%F DM_1991_3_2_a1
O. V. Denisov. An asymptotic formula for the number of correlation-immune Boolean functions of order~$k$. Diskretnaya Matematika, Tome 3 (1991) no. 2, pp. 25-46. http://geodesic.mathdoc.fr/item/DM_1991_3_2_a1/