An asymptotic formula for the number of correlation-immune Boolean functions of order~$k$
Diskretnaya Matematika, Tome 3 (1991) no. 2, pp. 25-46
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain an asymptotic formula for the $N(n,k)$-number of correlation-immune Boolean $n$-variable functions of order $k$. We prove that as $n\to\infty$
$$
N(n,k)\sim\frac{2^{2^n}}{2^k\exp\biggl(\sum_{i=1}^k\Bigl(\ln\sqrt\frac{\pi}2+\Bigl(\frac n2-i\Bigr)\ln2\Bigr)\binom ni\biggr)}\,,
$$ where $k$ is a fixed constant that does not depend on $n$ $(k=1,2,\dots$).
@article{DM_1991_3_2_a1,
author = {O. V. Denisov},
title = {An asymptotic formula for the number of correlation-immune {Boolean} functions of order~$k$},
journal = {Diskretnaya Matematika},
pages = {25--46},
publisher = {mathdoc},
volume = {3},
number = {2},
year = {1991},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1991_3_2_a1/}
}
O. V. Denisov. An asymptotic formula for the number of correlation-immune Boolean functions of order~$k$. Diskretnaya Matematika, Tome 3 (1991) no. 2, pp. 25-46. http://geodesic.mathdoc.fr/item/DM_1991_3_2_a1/