Estimates for functionals of a~density constructed from discretized observations
Diskretnaya Matematika, Tome 2 (1990) no. 4, pp. 92-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of estimating a functional $G(f)=\int_Kg(f(x))\,dx$ of an unknown density $f(x)$ of a distribution concentrated on an $r$-dimensional unit cube $K$, where $g$ is a sufficiently smooth function, on the basis of the discretization of the independent observations $X_1,\dots,X_n$ with density $f(x)$. We give an estimate for $G_n$ that is constructed on the basis of the discretization of $n$ observations with step $1/n$ and give conditions under which the variable $\gamma_n=n^{1/2}(G_n-G(f))$ is asymptotically normal as $n\to\infty$. In the case when $r=1$ the limit variance is minimal.
@article{DM_1990_2_4_a9,
     author = {V. P. Borovikov},
     title = {Estimates for functionals of a~density constructed from discretized observations},
     journal = {Diskretnaya Matematika},
     pages = {92--96},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1990_2_4_a9/}
}
TY  - JOUR
AU  - V. P. Borovikov
TI  - Estimates for functionals of a~density constructed from discretized observations
JO  - Diskretnaya Matematika
PY  - 1990
SP  - 92
EP  - 96
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1990_2_4_a9/
LA  - ru
ID  - DM_1990_2_4_a9
ER  - 
%0 Journal Article
%A V. P. Borovikov
%T Estimates for functionals of a~density constructed from discretized observations
%J Diskretnaya Matematika
%D 1990
%P 92-96
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1990_2_4_a9/
%G ru
%F DM_1990_2_4_a9
V. P. Borovikov. Estimates for functionals of a~density constructed from discretized observations. Diskretnaya Matematika, Tome 2 (1990) no. 4, pp. 92-96. http://geodesic.mathdoc.fr/item/DM_1990_2_4_a9/