Comparisons modulo a~prime for the number of $(0,1)$-matrices
Diskretnaya Matematika, Tome 2 (1990) no. 3, pp. 153-157
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $B$ be a set of $(0,1)$ $n\times n$ matrices such that if $M\in B$ and $M'$ is obtained from $M$ by an arbitrary rearrangement of rows and columns, then $M'\in B$. For prime $p$ we find comparisons modulo $p$ for $|B|$, where $|B|$ is the number of elements in $B$. We consider applications of this result in cases when $B$ is 1) a set of matrices with a permanent equal to $r$, $r\in\mathbb N_0=\{0,1,2,\cdots\}$; 2) a set of matrices with given row and column sums.
@article{DM_1990_2_3_a17,
author = {E. E. Marenich},
title = {Comparisons modulo a~prime for the number of $(0,1)$-matrices},
journal = {Diskretnaya Matematika},
pages = {153--157},
publisher = {mathdoc},
volume = {2},
number = {3},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1990_2_3_a17/}
}
E. E. Marenich. Comparisons modulo a~prime for the number of $(0,1)$-matrices. Diskretnaya Matematika, Tome 2 (1990) no. 3, pp. 153-157. http://geodesic.mathdoc.fr/item/DM_1990_2_3_a17/