Regular languages with polynomial growth in the number of words
Diskretnaya Matematika, Tome 2 (1990) no. 3, pp. 285-292.

Voir la notice de l'article provenant de la source Math-Net.Ru

An important feature of regular sets is the functions that describe the distribution of the number of words of given length in them, which are called the growth functions of these sets. We establish that any nonnegative integer-valued polynomial can be the growth function of a regular set.
@article{DM_1990_2_3_a16,
     author = {A. S. Strogalov},
     title = {Regular languages with polynomial growth in the number of words},
     journal = {Diskretnaya Matematika},
     pages = {285--292},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1990_2_3_a16/}
}
TY  - JOUR
AU  - A. S. Strogalov
TI  - Regular languages with polynomial growth in the number of words
JO  - Diskretnaya Matematika
PY  - 1990
SP  - 285
EP  - 292
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1990_2_3_a16/
LA  - ru
ID  - DM_1990_2_3_a16
ER  - 
%0 Journal Article
%A A. S. Strogalov
%T Regular languages with polynomial growth in the number of words
%J Diskretnaya Matematika
%D 1990
%P 285-292
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1990_2_3_a16/
%G ru
%F DM_1990_2_3_a16
A. S. Strogalov. Regular languages with polynomial growth in the number of words. Diskretnaya Matematika, Tome 2 (1990) no. 3, pp. 285-292. http://geodesic.mathdoc.fr/item/DM_1990_2_3_a16/