Approximation properties of discrete Fourier sums
Diskretnaya Matematika, Tome 2 (1990) no. 2, pp. 33-44
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\omega^T_N=\{u+2j\pi /N\}^{N-1}_{j=0}$, $\omega_N=\{ 0,1,\cdots ,N-1\},$ where $u$ is an arbitrary real number and $2\leq N$ is a natural number. It is well known that the trigonometric functions $1$, $\cos x$, $\sin x,\dots,\cos nx$, $\sin nx$ ($2n\leqslant N$) form an orthogonal system on $\omega ^T_N$, and the Hahn polynomials $Q_0(x),\dots ,Q_{n-1}(x)$ form an orthogonal system on $\omega _N$ with weight $\rho (x)=\Gamma (x+\alpha +1)\Gamma (N-x+\beta )/(\Gamma (x+1)\Gamma (N-x))$, $\alpha,\beta>-1$. We study a problem on the approximation of discrete functions by Fourier sums with respect to these systems. We establish discrete analogues of the well-known result of K. I. Oskolkov on an estimate for the deviation of a Fourier partial sum of a continuous $2\pi$-periodic function.
@article{DM_1990_2_2_a2,
author = {I. I. Sharapudinov},
title = {Approximation properties of discrete {Fourier} sums},
journal = {Diskretnaya Matematika},
pages = {33--44},
publisher = {mathdoc},
volume = {2},
number = {2},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1990_2_2_a2/}
}
I. I. Sharapudinov. Approximation properties of discrete Fourier sums. Diskretnaya Matematika, Tome 2 (1990) no. 2, pp. 33-44. http://geodesic.mathdoc.fr/item/DM_1990_2_2_a2/