Upper bounds on finite-automaton complexity for generalized regular expressions in a~one-letter alphabet
Diskretnaya Matematika, Tome 1 (1989) no. 4, pp. 12-16
Voir la notice de l'article provenant de la source Math-Net.Ru
We compare the complexity of specifying a regular event by a finite automaton and a generalized regular expression. The measure of complexity of the automaton is the number of its states $G$, and the measure of complexity of the generalized regular expression is its refined length $\alpha$. We show that for generalized (having operations of set-theoretic complementation and intersection) regular expressions in a one-letter alphabet, $G\leqslant 3^\alpha$.
@article{DM_1989_1_4_a1,
author = {Z. R. Dang},
title = {Upper bounds on finite-automaton complexity for generalized regular expressions in a~one-letter alphabet},
journal = {Diskretnaya Matematika},
pages = {12--16},
publisher = {mathdoc},
volume = {1},
number = {4},
year = {1989},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1989_1_4_a1/}
}
TY - JOUR AU - Z. R. Dang TI - Upper bounds on finite-automaton complexity for generalized regular expressions in a~one-letter alphabet JO - Diskretnaya Matematika PY - 1989 SP - 12 EP - 16 VL - 1 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_1989_1_4_a1/ LA - ru ID - DM_1989_1_4_a1 ER -
Z. R. Dang. Upper bounds on finite-automaton complexity for generalized regular expressions in a~one-letter alphabet. Diskretnaya Matematika, Tome 1 (1989) no. 4, pp. 12-16. http://geodesic.mathdoc.fr/item/DM_1989_1_4_a1/