Approximations of words by words without self-duplication
Diskretnaya Matematika, Tome 1 (1989) no. 2, pp. 52-56
Voir la notice de l'article provenant de la source Math-Net.Ru
We solve a problem of defining, for the word $\alpha $, pairs of the words $x$ and $y$ with a minimal sum of lengths $l(\alpha )$ and such that $x\alpha y$ does not have self-duplication (i.e., natural subwords $\beta \colon x\alpha y=\beta\gamma_1=\gamma_2\beta$).
For the function $l(n)=\max l(\alpha )$ (the maximum over all $\alpha $'s of length $n$) we show that $l(n)$ has $\log\log n$ order of growth. We obtain upper and lower bounds for $l(n)$.
@article{DM_1989_1_2_a4,
author = {M. Yu. Baryshev},
title = {Approximations of words by words without self-duplication},
journal = {Diskretnaya Matematika},
pages = {52--56},
publisher = {mathdoc},
volume = {1},
number = {2},
year = {1989},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1989_1_2_a4/}
}
M. Yu. Baryshev. Approximations of words by words without self-duplication. Diskretnaya Matematika, Tome 1 (1989) no. 2, pp. 52-56. http://geodesic.mathdoc.fr/item/DM_1989_1_2_a4/