The number of antichains in ranked partially ordered sets
Diskretnaya Matematika, Tome 1 (1989) no. 1, pp. 35-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the asymptotic behavior of the number of antichains in partially ordered sets whose diagrams are bipartite graphs that possess extension properties and whose number of vertices does not exceed $c\log_2\kappa$, where $\kappa$ is the minimum of the degrees of the vertices and $c$ is a constant less than 3. As a consequence we obtain the well-known asymptotic behavior of the number of binary codes with distance 2.
@article{DM_1989_1_1_a7,
     author = {A. A. Sapozhenko},
     title = {The number of antichains in ranked partially ordered sets},
     journal = {Diskretnaya Matematika},
     pages = {35--58},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1989_1_1_a7/}
}
TY  - JOUR
AU  - A. A. Sapozhenko
TI  - The number of antichains in ranked partially ordered sets
JO  - Diskretnaya Matematika
PY  - 1989
SP  - 35
EP  - 58
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1989_1_1_a7/
LA  - ru
ID  - DM_1989_1_1_a7
ER  - 
%0 Journal Article
%A A. A. Sapozhenko
%T The number of antichains in ranked partially ordered sets
%J Diskretnaya Matematika
%D 1989
%P 35-58
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1989_1_1_a7/
%G ru
%F DM_1989_1_1_a7
A. A. Sapozhenko. The number of antichains in ranked partially ordered sets. Diskretnaya Matematika, Tome 1 (1989) no. 1, pp. 35-58. http://geodesic.mathdoc.fr/item/DM_1989_1_1_a7/