The number of antichains in ranked partially ordered sets
Diskretnaya Matematika, Tome 1 (1989) no. 1, pp. 74-93
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain the asymptotic behavior of the number of antichains in partially ordered sets whose diagrams are bipartite graphs that possess extension properties and whose number of vertices does not exceed $c\log_2\kappa$, where $\kappa$ is the minimum of the degrees of the vertices and $c$ is a constant less than 3. As a consequence we obtain the well-known asymptotic behavior of the number of binary codes with distance 2.
@article{DM_1989_1_1_a7,
     author = {A. A. Sapozhenko},
     title = {The number of antichains in ranked partially ordered sets},
     journal = {Diskretnaya Matematika},
     pages = {74--93},
     year = {1989},
     volume = {1},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1989_1_1_a7/}
}
TY  - JOUR
AU  - A. A. Sapozhenko
TI  - The number of antichains in ranked partially ordered sets
JO  - Diskretnaya Matematika
PY  - 1989
SP  - 74
EP  - 93
VL  - 1
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DM_1989_1_1_a7/
LA  - ru
ID  - DM_1989_1_1_a7
ER  - 
%0 Journal Article
%A A. A. Sapozhenko
%T The number of antichains in ranked partially ordered sets
%J Diskretnaya Matematika
%D 1989
%P 74-93
%V 1
%N 1
%U http://geodesic.mathdoc.fr/item/DM_1989_1_1_a7/
%G ru
%F DM_1989_1_1_a7
A. A. Sapozhenko. The number of antichains in ranked partially ordered sets. Diskretnaya Matematika, Tome 1 (1989) no. 1, pp. 74-93. http://geodesic.mathdoc.fr/item/DM_1989_1_1_a7/