Robust estimation in the multivariate normal model
Discussiones Mathematicae. Probability and Statistics, Tome 36 (2016) no. 1-2, pp. 53-66.

Voir la notice de l'article provenant de la source Library of Science

Robust estimation presented in the following paper is based on Fisher consistent and Fréchet differentiable statistical functionals. The method has been used in the multivariate normal model with variance components [5]. To transfer the method to estimate vector of expectations and positive definite covariance matrix of the multivariate normal model it is required to express the covariance matrix as a linear combination of basic elements of the vector space of real, square and symmetric matrices. The theoretical results have been completed with computer simulation studies. The robust estimator has been investigated both for model and contaminated data. Comparison with the maximum likelihood estimator has also been included.
Keywords: asymptotic normality, Fisher consistency, Fréchet differentiability, multivariate normal model, statistical functional
@article{DMPS_2016_36_1-2_a3,
     author = {Kulawik, Agnieszka and Zontek, Stefan},
     title = {Robust estimation in the multivariate normal model},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {53--66},
     publisher = {mathdoc},
     volume = {36},
     number = {1-2},
     year = {2016},
     zbl = {1328.62315},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2016_36_1-2_a3/}
}
TY  - JOUR
AU  - Kulawik, Agnieszka
AU  - Zontek, Stefan
TI  - Robust estimation in the multivariate normal model
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2016
SP  - 53
EP  - 66
VL  - 36
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2016_36_1-2_a3/
LA  - en
ID  - DMPS_2016_36_1-2_a3
ER  - 
%0 Journal Article
%A Kulawik, Agnieszka
%A Zontek, Stefan
%T Robust estimation in the multivariate normal model
%J Discussiones Mathematicae. Probability and Statistics
%D 2016
%P 53-66
%V 36
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2016_36_1-2_a3/
%G en
%F DMPS_2016_36_1-2_a3
Kulawik, Agnieszka; Zontek, Stefan. Robust estimation in the multivariate normal model. Discussiones Mathematicae. Probability and Statistics, Tome 36 (2016) no. 1-2, pp. 53-66. http://geodesic.mathdoc.fr/item/DMPS_2016_36_1-2_a3/

[1] B.R. Clarke, Uniqueness and Fréchet differentiability of functional solutions to maximum likelihood type equations, Ann. Statist. 11 (4) (1983), 1196-1205.

[2] T. Bednarski and S. Zontek, Robust estimation of parameters in a mixed unbalanced model, Ann. Statist. 24 (4) (1996), 1493-1510.

[3] P.J. Huber, Robust Statistics (Wiley, New York, 1981).

[4] J. Kiefer, On large deviations of the empiric D.F. of vector chance variables and a law of iterated logarithm, Pacific J. Math. 11 (1961), 649-660.

[5] A. Kulawik and S. Zontek, Robust estimation in the multivariate normal model with variance components, Statistics 49 (4), 766-780.

[6] R.A. Maronna, Robust M-estimators of multivariate location and scatter, Ann. Statist. 4 (1) (1976), 51-67.

[7] P.J. Rousseeuw, Multivariate estimation with high breakdown point, Mathematical Statistics and Applications, Vol. B (Bad Tatzmannsdorf, 1983), (Reidel, Dordrecht, 1985), 283-297.

[8] R. Zmyślony and S. Zontek, Robust M-estimator of parameters in variance components model, Discuss. Math. Probability and Statistics 22 (2002), 61-71.

[9] S. Zontek, Multivariate robust estimation in linear model for spatially located sensors and random input, Discuss. Math. Algebra and Stochastic Methods 18 (1998), 195-206.