Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2015_35_1-2_a5, author = {Ben\v{s}i\'c, Mirta}, title = {Properties of the generalized nonlinear least squares method applied for fitting distribution to data}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {75--94}, publisher = {mathdoc}, volume = {35}, number = {1-2}, year = {2015}, zbl = {1333.62064}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2015_35_1-2_a5/} }
TY - JOUR AU - Benšić, Mirta TI - Properties of the generalized nonlinear least squares method applied for fitting distribution to data JO - Discussiones Mathematicae. Probability and Statistics PY - 2015 SP - 75 EP - 94 VL - 35 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2015_35_1-2_a5/ LA - en ID - DMPS_2015_35_1-2_a5 ER -
%0 Journal Article %A Benšić, Mirta %T Properties of the generalized nonlinear least squares method applied for fitting distribution to data %J Discussiones Mathematicae. Probability and Statistics %D 2015 %P 75-94 %V 35 %N 1-2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2015_35_1-2_a5/ %G en %F DMPS_2015_35_1-2_a5
Benšić, Mirta. Properties of the generalized nonlinear least squares method applied for fitting distribution to data. Discussiones Mathematicae. Probability and Statistics, Tome 35 (2015) no. 1-2, pp. 75-94. http://geodesic.mathdoc.fr/item/DMPS_2015_35_1-2_a5/
[1] P.A. Al-Baidhani and C.D. Sinclair, Comparison of methods of estimation of parameters of the Weibull distribution, Communications in Statistics - Simulation and Computation 16 (1987), 373-384.
[2] T.W. Anderson and D.A. Darling, Asymptotic theory of certain 'goodness of fit' criteria based on stochastic processes, Ann. Math. Statist. 23 (1952), 193-212.
[3] M. Benšić, Fitting distribution to data by a generalized nonlinear least squares method, Communications in Statistics - Simulation and Computation (2012), in press.
[4] P. Billingsly, Convergence of Probability Measures (John Wiley Sons, New York, 1968).
[5] J. Castillo and J. Daoudi, Estimation of the generalized Pareto distribution, Statistics and Probability Letters 79 (2009), 684-688.
[6] D. Jukić, M. Benšiś and R. Scitovski, On the existence of the nonlinear weighted least squares estimate for a three-parameter Weibull distribution, Computational Statistics Data Analysis 52 (2008), 4502-4511.
[7] D. Harris and L. Matyas, Introduction to the generalized method of moment estimation, Matyas, L. (Ed.), Generalized method of moment estimation (Cambridge University Press, Cambridge, 1999), 3-30.
[8] D. Kundu and M.Z. Raqab, Generalized Rayleigh distribution: different methods of estimations, Computational Statistics Data Analysis 49 (2005), 187-200.
[9] D. Kundu and M.Z. Raqab, Burr Type X distribution: Revisited, J. Prob. Stat. Sci. 4 (2006), 179-193.
[10] J.F. Lawless, Statistical Models and Methods for Lifetime Data (Wiley, New York, 1982).
[11] A. Luceño, Fitting the generalized Pareto distribution to data using maximum goodness-of-fit estimator, Comp. Stat. Data Anal. 51 (2006), 904-917.
[12] D.N.P. Murthy, M. Bulmer and J.A. Eccleston, Weibull model selection for reliability modelling, Reliability Engineering and System Safety 86 (2004), 257-267.
[13] D. Pollard, The minimum distance method of testing, Metrika 27 (1980), 43-70.
[14] H. Rinne, The Weibull Distribution. A Handbook (Chapman Hall/CRC, Boca Raton, 2009).
[15] G.A.F. Seber and C.J. Wild, Nonlinear Regression (John Wiley Sons, New York, 1989).
[16] R.L. Smith and J.C. Naylor, A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution, Biometrika 73 (1987), 67-90.
[17] J.G. Surles and W.J. Padgett, Inference for reliability and stress-strength for a scaled Burr Type X distribution, Lifetime Data Analysis 7 (2001), 187-200.
[18] F.J. Torres, Estimation of parameters of the shifted Gompertz distribution using least squares, maximum likelihood and moments methods, J. Comp. and Appl. Math. 255 (2014), 867-877.
[19] J. Wolfowitz, Estimation by minimum distance method, Ann. Inst. Statisti. Math. 5 (1953), 9-23.
[20] J. Wolfowitz, The minimum distance method, Ann. Math. Statist. 28 (1957), 75-88.