Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2015_35_1-2_a0, author = {Syga, Joachim}, title = {Semimartingale measure in the investigation of {Stratonovich-type} stochastic integrals and inclusions}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {7--27}, publisher = {mathdoc}, volume = {35}, number = {1-2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2015_35_1-2_a0/} }
TY - JOUR AU - Syga, Joachim TI - Semimartingale measure in the investigation of Stratonovich-type stochastic integrals and inclusions JO - Discussiones Mathematicae. Probability and Statistics PY - 2015 SP - 7 EP - 27 VL - 35 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2015_35_1-2_a0/ LA - en ID - DMPS_2015_35_1-2_a0 ER -
%0 Journal Article %A Syga, Joachim %T Semimartingale measure in the investigation of Stratonovich-type stochastic integrals and inclusions %J Discussiones Mathematicae. Probability and Statistics %D 2015 %P 7-27 %V 35 %N 1-2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2015_35_1-2_a0/ %G en %F DMPS_2015_35_1-2_a0
Syga, Joachim. Semimartingale measure in the investigation of Stratonovich-type stochastic integrals and inclusions. Discussiones Mathematicae. Probability and Statistics, Tome 35 (2015) no. 1-2, pp. 7-27. http://geodesic.mathdoc.fr/item/DMPS_2015_35_1-2_a0/
[1] K.K. Aase and P.Guttrup, Estimation in models for security prices, Scand. Actuarial J. 3/4 (1987), 211-225.
[2] N.U. Ahmed, Nonlinear stochastic differential inclusions on Banach spaces, Stoch. Anal. Appl. 12 (1994), 1-10.
[3] N.U. Ahmed, Impulsive perturbation of C₀ semigroups and stochastic evolution inclusions, Discuss. Math. DICO 22 (1) (2002), 125-149.
[4] N.U. Ahmed, A brief summary of optimal control of uncertain systems governed by parabolic inclusions, Arab. J. Sci. Eng. ASJE Math. 4 (1D) (2009), 13-23.
[5] J.P. Aubin and A. Cellina, Differential Inclusions (Springer-Verlag, Berlin, Heidelberg, New York, 1984).
[6] J.P. Aubin and H. Frankowska, Set-Valued Analysis (Birkhäuser, Boston - Basel - Berlin, 1990).
[7] J.P. Aubin and G. Da Prato, The viability theorem for stochastic differential inclusions, Stoch. Anal. Appl. 16 (1998), 1-15.
[8] E.P. Avgerinos and N.S. Papageorgiou, Random nonlinear evolution inclusions in reflexive Banach spaces, Proc. Amer. Math. Soc. 104 (1988), 293-299.
[9] K.L. Chung and R.J. Williams, Introduction to stochastic integration (Birkhäuser, Boston - Basel - Berlin, 1990).
[10] G. Da Prato and H. Frankowska, A stochastic Filippov theorem, Stoch. Anal. Appl. 12 (4) (1994), 409-426.
[11] D. Duffie, Dynamic Asset Pricing Theory (Princeton Univ. Press Princeton, New Jersey, 1996).
[12] M. Errami, F. Russo and P. Vallois, Itôs formula for $C^{1,λ}$-functions of a càdlàg process and related calculus, Probab. Theory Relat. Fields 122 (2002), 191-221.
[13] A. Fryszkowski, Continuous selections of Aumann integrals, J. Math. Anal. Appl. 145 (2) (1990), 431-446.
[14] Góralczyk and J. Motyl, Stratonovich stochastic inclusion, Dynam. Systems Appl. 18 (2) (2009), 191-204.
[15] F. Hiai and H. Umegaki, Integrals, conditional expectations, J. Multivar. Anal. 7 (1977), 149-182.
[16] M. Kisielewicz, Properties of solution set of stochastic inclusions, J. Appl. Math. Stoch. Anal. 6 (3) (1993), 217-236.
[17] M. Kisielewicz, Existence theorem for nonconvex stochastic inclusions, J. Appl. Math. Stoch. Anal. 2 (1994), 151-159.
[18] M. Kisielewicz, Set-valued stochastic integrals and stochastic inclusions, Stoch. Anal. Appl. 15 (5) (1997), 783-800.
[19] M. Kisielewicz, Differential Inclusions and Optimal Control (Kluwer Acad. Publ. and Polish Sci. Publ. (Warszawa - Dordrecht - Boston - London, 1991).
[20] M. Kisielewicz, M. Michta and J. Motyl, Set valued approach to stochastic control. Part I (Existence and Regularity Properties), Dynam. Systems Appl. 12 (2003), 405-432.
[21] M. Kisielewicz, M. Michta and J. Motyl, Set valued approach to stochastic control. Part II (Viability and Semimartingale Issues), Dynam. Systems Appl. 12 (2003), 433-466.
[22] M. Michta, On set-valued stochastic integrals and fuzzy stochastic equations, Fuzzy Sets and Systems 177 (2011), 1-19.
[23] M. Michta and J. Motyl, Differentiable selections of multifunctions and their applications, Nonlinear Anal. 66 (2) (2007), 536-545.
[24] M. Michta and J. Motyl, Martingale problem to Stratonovich stochastic inclusion, Nonlinear Anal. 71 (12) (2009), e1307-e1311.
[25] J. Motyl, On the solution of a stochastic differential inclusion, J. Math. Anal. Appl. 192 (1) (1995), 117-132.
[26] J. Motyl, Note on strong solutions of a stochastic inclusion, J. Appl. Math. Stoch. Anal. 8 (3) (1995), 291-297.
[27] J. Motyl, Existence of solutions of set-valued Itô equation, Bull. Acad. Pol. Sci. 46 (1998), 419-430.
[28] J. Motyl and J. Syga, Properties of set-valued stochastic integrals, Discuss. Math. Probab. Stat. 26 (2006), 83-103.
[29] J. Motyl and J. Syga, Selection property of Stratonovich set-valued integral, Dynamics of Continuous, Discrete and Impulsive Systems 17 (2010), 431-443.
[30] P. Protter, Stochastic Integration and Differential Equations, Springer-Verlag, 2nd Edition, Version 2.1 (Berlin - Heideberg - New York, 2005).
[31] D. Repovš and P.V. Semenov, Continuous selections of multivalued mappings (Kluwer Academic Publishers (Dordrecht, Boston, London, 1998)).
[32] F. Russo and P. Vallois, Forward, backward and symmetric stochastic integration, Probab. Theory Relat. Fields 97 (1993), 403-421.
[33] F. Russo and P. Vallois, The generalized covariation process and Ito formula, Stochastic Process. Appl. 59 (1995), 81-104.
[34] J. Syga, Application of semimartingale measure to the investigation of stochastic inclusion, Dynam. Systems Appl. 21 (2012), 393-406.