Algebraic structure for the crossing of balanced and stair nested designs
Discussiones Mathematicae. Probability and Statistics, Tome 34 (2014) no. 1-2, pp. 71-88.

Voir la notice de l'article provenant de la source Library of Science

Stair nesting allows us to work with fewer observations than the most usual form of nesting, the balanced nesting. In the case of stair nesting the amount of information for the different factors is more evenly distributed. This new design leads to greater economy, because we can work with fewer observations. In this work we present the algebraic structure of the cross of balanced nested and stair nested designs, using binary operations on commutative Jordan algebras. This new cross requires fewer observations than the usual cross balanced nested designs and it is easy to carry out inference.
Keywords: balanced nested designs, stair nested designs, crossing, commutative Jordan algebras, variance components, inference
@article{DMPS_2014_34_1-2_a5,
     author = {Fernandes, C\'elia and Ramos, Paulo and Mexia, Jo\~ao},
     title = {Algebraic structure for the crossing of balanced and stair nested designs},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {71--88},
     publisher = {mathdoc},
     volume = {34},
     number = {1-2},
     year = {2014},
     zbl = {1326.62160},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a5/}
}
TY  - JOUR
AU  - Fernandes, Célia
AU  - Ramos, Paulo
AU  - Mexia, João
TI  - Algebraic structure for the crossing of balanced and stair nested designs
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2014
SP  - 71
EP  - 88
VL  - 34
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a5/
LA  - en
ID  - DMPS_2014_34_1-2_a5
ER  - 
%0 Journal Article
%A Fernandes, Célia
%A Ramos, Paulo
%A Mexia, João
%T Algebraic structure for the crossing of balanced and stair nested designs
%J Discussiones Mathematicae. Probability and Statistics
%D 2014
%P 71-88
%V 34
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a5/
%G en
%F DMPS_2014_34_1-2_a5
Fernandes, Célia; Ramos, Paulo; Mexia, João. Algebraic structure for the crossing of balanced and stair nested designs. Discussiones Mathematicae. Probability and Statistics, Tome 34 (2014) no. 1-2, pp. 71-88. http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a5/

[1] C. Fernandes, P. Ramos and J. Mexia, Algebraic structure of step nesting designs, Discuss. Math. Probab. Stat. 30 (2010) 221-235. doi: 10.7151/dmps.1129.

[2] C. Fernandes, P. Ramos and J. Mexia, Crossing balanced nested and stair nested designs, Electron. J. Linear Algebra 25 (2012) 22-47.

[3] M. Fonseca, J. Mexia and R. Zmyślony, Estimators and tests for variance components in cross nested orthogonal designs, Discuss. Math. Probab. Stat. 23 (2003) 175-201.

[4] M. Fonseca, J. Mexia and R. Zmyślony, Binary Operations on Jordan Algebras and Orthogonal Normal Models, Linear Algebra Appl. 417 (2006) 75-86. doi: 10.1016/j.laa.2006.03.045.

[5] A. Khuri, T. Mathew and B. Sinha, Statistical tests for mixed linear models (John Wiley and Sons, New York, 1998).

[6] N. Jacobson, Structure and Representation of Jordan Algebras (Colloqium Publications 39, American Mathematical Society, 1968).

[7] P. Jordan, J. von Neumann and E. Wigner, On a algebraic generalization of the quantum mechanical formulation, Ann. Math. 35 (1934) 9-64.

[8] J. Seely, Linear spaces and unbiased estimation, Ann. Math. Stat. 41 (1970) 1725-1734. doi: 10.1214/aoms/1177696817.

[9] J. Seely, Linear spaces and unbiased estimators - Application to the mixed linear model, Ann. Math. Stat. 41 (1970) 1735-1745. doi: 10.1214/aoms/1177696818.

[10] J. Seely, Quadratic subspaces and completeness, Ann. Math. Stat. 42 (1971) 710-721. doi: 10.1214/aoms/1177693420.