Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2014_34_1-2_a5, author = {Fernandes, C\'elia and Ramos, Paulo and Mexia, Jo\~ao}, title = {Algebraic structure for the crossing of balanced and stair nested designs}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {71--88}, publisher = {mathdoc}, volume = {34}, number = {1-2}, year = {2014}, zbl = {1326.62160}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a5/} }
TY - JOUR AU - Fernandes, Célia AU - Ramos, Paulo AU - Mexia, João TI - Algebraic structure for the crossing of balanced and stair nested designs JO - Discussiones Mathematicae. Probability and Statistics PY - 2014 SP - 71 EP - 88 VL - 34 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a5/ LA - en ID - DMPS_2014_34_1-2_a5 ER -
%0 Journal Article %A Fernandes, Célia %A Ramos, Paulo %A Mexia, João %T Algebraic structure for the crossing of balanced and stair nested designs %J Discussiones Mathematicae. Probability and Statistics %D 2014 %P 71-88 %V 34 %N 1-2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a5/ %G en %F DMPS_2014_34_1-2_a5
Fernandes, Célia; Ramos, Paulo; Mexia, João. Algebraic structure for the crossing of balanced and stair nested designs. Discussiones Mathematicae. Probability and Statistics, Tome 34 (2014) no. 1-2, pp. 71-88. http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a5/
[1] C. Fernandes, P. Ramos and J. Mexia, Algebraic structure of step nesting designs, Discuss. Math. Probab. Stat. 30 (2010) 221-235. doi: 10.7151/dmps.1129.
[2] C. Fernandes, P. Ramos and J. Mexia, Crossing balanced nested and stair nested designs, Electron. J. Linear Algebra 25 (2012) 22-47.
[3] M. Fonseca, J. Mexia and R. Zmyślony, Estimators and tests for variance components in cross nested orthogonal designs, Discuss. Math. Probab. Stat. 23 (2003) 175-201.
[4] M. Fonseca, J. Mexia and R. Zmyślony, Binary Operations on Jordan Algebras and Orthogonal Normal Models, Linear Algebra Appl. 417 (2006) 75-86. doi: 10.1016/j.laa.2006.03.045.
[5] A. Khuri, T. Mathew and B. Sinha, Statistical tests for mixed linear models (John Wiley and Sons, New York, 1998).
[6] N. Jacobson, Structure and Representation of Jordan Algebras (Colloqium Publications 39, American Mathematical Society, 1968).
[7] P. Jordan, J. von Neumann and E. Wigner, On a algebraic generalization of the quantum mechanical formulation, Ann. Math. 35 (1934) 9-64.
[8] J. Seely, Linear spaces and unbiased estimation, Ann. Math. Stat. 41 (1970) 1725-1734. doi: 10.1214/aoms/1177696817.
[9] J. Seely, Linear spaces and unbiased estimators - Application to the mixed linear model, Ann. Math. Stat. 41 (1970) 1735-1745. doi: 10.1214/aoms/1177696818.
[10] J. Seely, Quadratic subspaces and completeness, Ann. Math. Stat. 42 (1971) 710-721. doi: 10.1214/aoms/1177693420.