On the properties of the Generalized Normal Distribution
Discussiones Mathematicae. Probability and Statistics, Tome 34 (2014) no. 1-2, pp. 35-49.

Voir la notice de l'article provenant de la source Library of Science

The target of this paper is to provide a critical review and to enlarge the theory related to the Generalized Normal Distributions (GND). This three term (position, scale shape) distribution is based in a strong theoretical background due to Logarithm Sobolev Inequalities. Moreover, the GND is the appropriate one to support the Generalized entropy type Fisher's information measure.
Keywords: entropy type Fisher's information, Shannon entropy, Normal distribution, truncated distribution
@article{DMPS_2014_34_1-2_a2,
     author = {Toulias, Thomas and Kitsos, Christos},
     title = {On the properties of the {Generalized} {Normal} {Distribution}},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {35--49},
     publisher = {mathdoc},
     volume = {34},
     number = {1-2},
     year = {2014},
     zbl = {1326.60024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a2/}
}
TY  - JOUR
AU  - Toulias, Thomas
AU  - Kitsos, Christos
TI  - On the properties of the Generalized Normal Distribution
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2014
SP  - 35
EP  - 49
VL  - 34
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a2/
LA  - en
ID  - DMPS_2014_34_1-2_a2
ER  - 
%0 Journal Article
%A Toulias, Thomas
%A Kitsos, Christos
%T On the properties of the Generalized Normal Distribution
%J Discussiones Mathematicae. Probability and Statistics
%D 2014
%P 35-49
%V 34
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a2/
%G en
%F DMPS_2014_34_1-2_a2
Toulias, Thomas; Kitsos, Christos. On the properties of the Generalized Normal Distribution. Discussiones Mathematicae. Probability and Statistics, Tome 34 (2014) no. 1-2, pp. 35-49. http://geodesic.mathdoc.fr/item/DMPS_2014_34_1-2_a2/

[1] W.A. Benter, Generalized Poincaré inequality for the Gaussian measures, Amer. Math. Soc. 105 (2) (1989) 49-60.

[2] T. Cacoullos and M. Koutras, Quadric forms in sherical random variables: Generalized non-central χ² distribution, Naval Research Logistics Quarterly 31 (1984) 447-461. doi: 10.1002/nav.3800310310.

[3] T.M. Cover and J.A. Thomas, Elements of Information Theory, 2nd Ed. (Wiley, 2006).

[4] K. Fragiadakis and S.G. Meintanis, Test of fit for asymentric Laplace distributions with applications, J. of Statistics: Advances in Theory and Applications 1 (1) (2009) 49-63.

[5] E. Gómez, M.A. Gómez-Villegas and J.M. Marin, A multivariate generalization of the power exponential family of distributions, Comm. Statist. Theory Methods 27 (3) (1998) 589-600. doi: 10.1080/03610929808832115

[6] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products (Elsevier, 2007).

[7] L. Gross, Logarithm Sobolev inequalities, Amer. J. Math. 97 (761) (1975) 1061-1083. doi: 10.2307/2373688

[8] C.P. Kitsos and N.K. Tavoularis, Logarithmic Sobolev inequalities for information measures, IEEE Trans. Inform. Theory 55 (6) (2009) 2554-2561. doi: 10.1109/TIT.2009.2018179

[9] C.P. Kitsos and N.K. Tavoularis, New entropy type information measures, in: Information Technology Interfaces (ITI 2009), Luzar, Jarec and Bekic (Ed(s)), (Dubrovnic, Croatia, 2009) 255-259.

[10] C.P. Kitsos and T.L. Toulias, Bounds for the generalized entropy-type information measure, J. Comm. Comp. 9 (1) (2012) 56-64.

[11] C.P. Kitsos, T.L. Toulias and C.P. Trandafir, On the multivariate γ-ordered normal distribution, Far East J. of Theoretical Statistics 38 (1) (2012) 49-73.

[12] C.P. Kitsos and T.L. Toulias, On the family of the γ-ordered normal distributions, Far East J. of Theoretical Statistics 35 (2) (2011) 95-114.

[13] C.P. Kitsos and T.L. Toulias, New information measures for the generalized normal distribution, Information 1 (2010) 13-27. doi: 10.3390/info1010013.

[14] C.P. Kitsos and T.L. Toulias, Entropy inequalities for the generalized Gaussia, in: Information Technology Interfaces (ITI 2010), Cavtat, Croatia (Ed(s)), (2010, 551-556.

[15] S. Kotz, Multivariate distribution at a cross-road, in: Statistical Distributions in Scientific Work Vol. 1, Patil, Kotz, Ord (Ed(s)), (Dordrecht, The Netherlands: D. Reidel Publ., 1975) 247-270. doi:10.1007/978-94-010-1842-5₂0.

[16] S. Kullback and A. Leibler A, On information and sufficiency, Ann. Math. Statist. 22 (1951) 79-86. doi: 10.1214/aoms/1177729694.

[17] S. Nadarajah, A generalized normal distribution, J. Appl. Stat. 32 (7) (2005) 685-694. doi: 10.1080/02664760500079464

[18] S. Nadarajah, The Kotz type distribution with applications, Statistics 37 (4) (2003) 341-358. doi: 10.1080/0233188031000078060

[19] T. Papaioanou and K. Ferentinos, Entropic descriptor of a complex behaviour, Comm. Stat. Theory and Methods 34 (2005) 1461-1470.

[20] M. Del Pino, J. Dolbeault and I. Gentil, Nonlinear difussions, hypercontractivity and the optimal $L^p$-Euclidean logarithic Sobolev ineqiality, J. Math. Anal. Appl. 293 (2) (2004) 375-388. doi: 10.1016/j.jmaa.2003.10.009

[21] C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948) 379-423, 623-656. doi: j.1538-7305.1948.tb01338.x.

[22] S. Sobolev, On a theorem of functional analysis, English translation: AMS Transl. Ser. 2 34 (1963) 39-68.