Asymptotic behaviour in the set of nonhomogeneous chains of stochastic operators
Discussiones Mathematicae. Probability and Statistics, Tome 32 (2012) no. 1-2, pp. 17-33
Voir la notice de l'article provenant de la source Library of Science
We study different types of asymptotic behaviour in the set of (infinite dimensional) nonhomogeneous chains of stochastic operators acting on L¹(μ) spaces. In order to examine its structure we consider different norm and strong operator topologies. To describe the nature of the set of nonhomogeneous chains of Markov operators with a particular limit behaviour we use the category theorem of Baire. We show that the geometric structure of the set of those stochastic operators which have asymptotically stationary density differs depending on the considered topologies.
Keywords:
Markov operator, asymptotic stability, residuality, dense $G_{δ}$
@article{DMPS_2012_32_1-2_a1,
author = {Pu{\l}ka, Ma{\l}gorzata},
title = {Asymptotic behaviour in the set of nonhomogeneous chains of stochastic operators},
journal = {Discussiones Mathematicae. Probability and Statistics},
pages = {17--33},
publisher = {mathdoc},
volume = {32},
number = {1-2},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMPS_2012_32_1-2_a1/}
}
TY - JOUR AU - Pułka, Małgorzata TI - Asymptotic behaviour in the set of nonhomogeneous chains of stochastic operators JO - Discussiones Mathematicae. Probability and Statistics PY - 2012 SP - 17 EP - 33 VL - 32 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2012_32_1-2_a1/ LA - en ID - DMPS_2012_32_1-2_a1 ER -
%0 Journal Article %A Pułka, Małgorzata %T Asymptotic behaviour in the set of nonhomogeneous chains of stochastic operators %J Discussiones Mathematicae. Probability and Statistics %D 2012 %P 17-33 %V 32 %N 1-2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2012_32_1-2_a1/ %G en %F DMPS_2012_32_1-2_a1
Pułka, Małgorzata. Asymptotic behaviour in the set of nonhomogeneous chains of stochastic operators. Discussiones Mathematicae. Probability and Statistics, Tome 32 (2012) no. 1-2, pp. 17-33. http://geodesic.mathdoc.fr/item/DMPS_2012_32_1-2_a1/