Asymptotic behaviour in the set of nonhomogeneous chains of stochastic operators
Discussiones Mathematicae. Probability and Statistics, Tome 32 (2012) no. 1-2, pp. 17-33.

Voir la notice de l'article provenant de la source Library of Science

We study different types of asymptotic behaviour in the set of (infinite dimensional) nonhomogeneous chains of stochastic operators acting on L¹(μ) spaces. In order to examine its structure we consider different norm and strong operator topologies. To describe the nature of the set of nonhomogeneous chains of Markov operators with a particular limit behaviour we use the category theorem of Baire. We show that the geometric structure of the set of those stochastic operators which have asymptotically stationary density differs depending on the considered topologies.
Keywords: Markov operator, asymptotic stability, residuality, dense $G_{δ}$
@article{DMPS_2012_32_1-2_a1,
     author = {Pu{\l}ka, Ma{\l}gorzata},
     title = {Asymptotic behaviour in the set of nonhomogeneous chains of stochastic operators},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {17--33},
     publisher = {mathdoc},
     volume = {32},
     number = {1-2},
     year = {2012},
     zbl = {1306.47044},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2012_32_1-2_a1/}
}
TY  - JOUR
AU  - Pułka, Małgorzata
TI  - Asymptotic behaviour in the set of nonhomogeneous chains of stochastic operators
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2012
SP  - 17
EP  - 33
VL  - 32
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2012_32_1-2_a1/
LA  - en
ID  - DMPS_2012_32_1-2_a1
ER  - 
%0 Journal Article
%A Pułka, Małgorzata
%T Asymptotic behaviour in the set of nonhomogeneous chains of stochastic operators
%J Discussiones Mathematicae. Probability and Statistics
%D 2012
%P 17-33
%V 32
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2012_32_1-2_a1/
%G en
%F DMPS_2012_32_1-2_a1
Pułka, Małgorzata. Asymptotic behaviour in the set of nonhomogeneous chains of stochastic operators. Discussiones Mathematicae. Probability and Statistics, Tome 32 (2012) no. 1-2, pp. 17-33. http://geodesic.mathdoc.fr/item/DMPS_2012_32_1-2_a1/

[1] Asymptotic properties of the iterates of stochastic operators on (AL) Banach lattices, Ann. Polon. Math. 52 (1990) 165-173

[2] On residualities in the set of Markov operators on ₁, Proc. Amer. Math. Soc. 133 (2005) 2119-2129. doi: 10.1090/S0002-9939-05-07776-2

[3] W. Bartoszek and M. Pułka, On mixing in the class of quadratic stochastic operators, submitted to Nonlinear Anal. Theory Methods Appl.

[4] More on the 'zero-two' law, Proc. Amer. Math. Soc 61 (1976) 262-264

[5] On ergodic properties of inhomogeneous Markov processes, Rev. Roumaine Math. Pures Appl. 43 (1998) 375-392

[6] On two recent papers on ergodicity in nonhomogeneous Markov chains, Annals Math. Stat. 43 (1972) 1732-1736. doi: 10.1214/aoms/1177692411

[7] Finite Markov Processes and Their Applications (John Wiley and Sons, 1980).

[8] Markov Chains: Theory and Applications (Wiley, New York, 1976).

[9] Structure of mixing and category of complete mixing for stochastic operators, Ann. Polon. Math. 56 (1992) 233-242

[10] Markov Chains and Stochastic Stability (Springer, London, 1993). doi: 10.1007/978-1-4471-3267-7

[11] F. Mukhamedov, On L₁-weak ergodicity of nonhomogeneous discrete Markov processes and its applications, Rev. Mat. Complut., in press. doi: 10.1007/s13163-012-0096-9

[12] On the mixing property and the ergodic principle for nonhomogeneous Markov chains, Linear Alg. Appl. 434 (2011) 1475-1488. doi: 10.1016/j.laa.2010.11.021

[13] Most Markov operators on C(X) are quasi-compact and uniquely ergodic, Colloq. Math. 52 (1987) 277-280