@article{DMPS_2012_32_1-2_a1,
author = {Pu{\l}ka, Ma{\l}gorzata},
title = {Asymptotic behaviour in the set of nonhomogeneous chains of stochastic operators},
journal = {Discussiones Mathematicae. Probability and Statistics},
pages = {17--33},
year = {2012},
volume = {32},
number = {1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMPS_2012_32_1-2_a1/}
}
TY - JOUR AU - Pułka, Małgorzata TI - Asymptotic behaviour in the set of nonhomogeneous chains of stochastic operators JO - Discussiones Mathematicae. Probability and Statistics PY - 2012 SP - 17 EP - 33 VL - 32 IS - 1-2 UR - http://geodesic.mathdoc.fr/item/DMPS_2012_32_1-2_a1/ LA - en ID - DMPS_2012_32_1-2_a1 ER -
Pułka, Małgorzata. Asymptotic behaviour in the set of nonhomogeneous chains of stochastic operators. Discussiones Mathematicae. Probability and Statistics, Tome 32 (2012) no. 1-2, pp. 17-33. http://geodesic.mathdoc.fr/item/DMPS_2012_32_1-2_a1/
[1] Asymptotic properties of the iterates of stochastic operators on (AL) Banach lattices, Ann. Polon. Math. 52 (1990) 165-173
[2] On residualities in the set of Markov operators on ₁, Proc. Amer. Math. Soc. 133 (2005) 2119-2129. doi: 10.1090/S0002-9939-05-07776-2
[3] W. Bartoszek and M. Pułka, On mixing in the class of quadratic stochastic operators, submitted to Nonlinear Anal. Theory Methods Appl.
[4] More on the 'zero-two' law, Proc. Amer. Math. Soc 61 (1976) 262-264
[5] On ergodic properties of inhomogeneous Markov processes, Rev. Roumaine Math. Pures Appl. 43 (1998) 375-392
[6] On two recent papers on ergodicity in nonhomogeneous Markov chains, Annals Math. Stat. 43 (1972) 1732-1736. doi: 10.1214/aoms/1177692411
[7] Finite Markov Processes and Their Applications (John Wiley and Sons, 1980).
[8] Markov Chains: Theory and Applications (Wiley, New York, 1976).
[9] Structure of mixing and category of complete mixing for stochastic operators, Ann. Polon. Math. 56 (1992) 233-242
[10] Markov Chains and Stochastic Stability (Springer, London, 1993). doi: 10.1007/978-1-4471-3267-7
[11] F. Mukhamedov, On L₁-weak ergodicity of nonhomogeneous discrete Markov processes and its applications, Rev. Mat. Complut., in press. doi: 10.1007/s13163-012-0096-9
[12] On the mixing property and the ergodic principle for nonhomogeneous Markov chains, Linear Alg. Appl. 434 (2011) 1475-1488. doi: 10.1016/j.laa.2010.11.021
[13] Most Markov operators on C(X) are quasi-compact and uniquely ergodic, Colloq. Math. 52 (1987) 277-280