Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2011_31_1-2_a8, author = {Neves, Maria and Cordeiro, Clara}, title = {Computational intensive methods for prediction and imputation in time series analysis}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {121--139}, publisher = {mathdoc}, volume = {31}, number = {1-2}, year = {2011}, zbl = {1260.62075}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2011_31_1-2_a8/} }
TY - JOUR AU - Neves, Maria AU - Cordeiro, Clara TI - Computational intensive methods for prediction and imputation in time series analysis JO - Discussiones Mathematicae. Probability and Statistics PY - 2011 SP - 121 EP - 139 VL - 31 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2011_31_1-2_a8/ LA - en ID - DMPS_2011_31_1-2_a8 ER -
%0 Journal Article %A Neves, Maria %A Cordeiro, Clara %T Computational intensive methods for prediction and imputation in time series analysis %J Discussiones Mathematicae. Probability and Statistics %D 2011 %P 121-139 %V 31 %N 1-2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2011_31_1-2_a8/ %G en %F DMPS_2011_31_1-2_a8
Neves, Maria; Cordeiro, Clara. Computational intensive methods for prediction and imputation in time series analysis. Discussiones Mathematicae. Probability and Statistics, Tome 31 (2011) no. 1-2, pp. 121-139. http://geodesic.mathdoc.fr/item/DMPS_2011_31_1-2_a8/
[1] A.M. Alonso, D. Peña and J. Romo, Forecasting time series with sieve bootstrap, Journal of Statistical Planning and Inference 100 (2002) 1-11. doi: 10.1016/S0378-3758(01)00092-1.
[2] A.M. Alonso, D. Peña and J. Romo, On sieve bootstrap prediction intervals, Statistics Probability Letters 65 (2003) 13-20. doi: 10.1016/S0167-7152(03)00214-1.
[3] Nonlinear Time Series, Springer Series in Statistics, New York, Springer (2003.
[4] Nonlinear Time Series, Statistical Forecasting for inventory control, New York, McGraw-Hill (1959.
[5] P. Bühlmann, Sieve bootstrap for time series, Bernoulli 3 (1997) 123-148. doi: 10.2307/3318584.
[6] E. Carlstein, The use of subseries values for estimating the variance of a general statistic from a stationary sequence, Annals of Statistics 14 (1986) 1171-1179. doi: 10.1214/aos/1176350057.
[7] The Analysis of Time Series. An Introduction, 6th ed. Chapman Hall (2004).
[8] The Bootstrap methodology in time series forecasting, 'Proceedings of CompStat2006', in: J. Black and A. White, Springer Verlag (Ed(s)), (2006, 1067-1073.
[9] The Bootstrap prediction intervals: a case-study, 'Proceedings of the 22nd International Workshop on Statistical Modelling (IWSM2007)', in: J. Castillo, A. Espinal and P. Puig, Springer Verlag (Ed(s)), (2007, 191-194.
[10] Bootstrap and exponential smoothing working together in forecasting time series, 'Proceedings in Computational Statistics (COMPSTAT 2008)', in: Paula Brito, Physica-Verlag (Ed(s)), (2008, 891-899.
[11] C. Cordeiro and M.M. Neves, Forecasting time series with Boot.EXPOS procedures, REVSTAT 7 (2009) 135-149.
[12] Forecasting Principles And Applications, McGraw-Hill International Editions (1998.
[13] E.S. Gardner, Exponential smoothing: the state of the art, J. of Forecasting 4 (1985) 1-38. doi: 10.1002/for.3980040103.
[14] E.S. Gardner and E. Mckenzie, Forecasting trends in time series, Management Science 31 (1985) 1237-1246. doi: 10.1287/mnsc.31.10.1237.
[15] P. Hall, Resampling a coverage pattern, Stochastic Processes and their Applications 20 (1985) 231-246. doi: 10.1016/0304-4149(85)90212-1.
[16] Forecasting seasonals and trends by exponentially weighted averages, O.N.R. Memorandum 52/1957, Carnegie Institute of Technology (1957.
[17] forecast: Forecasting functions for time series, software available at http://www.robjhyndman.com/Rlibrary/forecast/ (2011.
[18] R. Hyndman and Y. Khandakar, Automatic Time Series Forecasting: The forecast Package for Rh, Journal of Statistical Software 27 (2008).
[19] R. Hyndman, A. Koehler, R. Snyder and S. Grose, A state framework for automatic forecasting using exponential smoothing methods, International Journal of Forecasting 18 (2002) 439-454. doi: 10.1016/S0169-2070(01)00110-8.
[20] R. Hyndman, A. Koehler, J. Ord and R. Snyder, Forecasting with Exponential Smoothing: The State Space Approach (Springer-Verlag Inc, 2008). doi: 10.1007/978-3-540-71918-2.
[21] H. Künsch, The Jackknife and the Bootstrap for General Stationary Observations, The Annals of Statistics 17 (1989) 1217-1241. doi: 10.1214/aos/1176347265.
[22] Resampling Methods for Dependente Data, Springer Verlag Inc (2003) doi: 10.1007/978-1-4757-3803-2.
[23] S. Makridakis and M. Hibon, The M3-Competition: results, conclusions and implications, International Journal of Forecasting 16 (2000) 451-476. doi: 10.1016/S0169-2070(00)00057-1.
[24] Exponential smoothing: some new variations, Management Science, 12 (1969), 311-315.
[25] D. Politis and J. Romano, A circular block-resampling procedure for stationary data, in: Exploring the limits of bootstrap, Lepage, R. e Billard, L. (Ed(s)), (Wiley, 1992) 263-270.
[26] R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/ (2011.
[27] Exponential smoothing with a damped multiplicative trend, International Journal of Forecasting Management Science, 19 (2003) 273-289.
[28] A. Trapletti, datasets: The R Datasets Package by A. Trapletti (package version 0.10, URL http://CRAN.R-project.org/package=datasets, 2008).
[29] A. Trapletti and K. Hornik, tseries: Time Series Analysis and Computational Finance (R package version 0.10-18, 2009).
[30] P.R. Winters, Forecasting sales by exponentially weighted moving averages, Management Science 6 (1960) 349-362. doi: 10.1287/mnsc.6.3.324.