Application of HLM to data with multilevel structure
Discussiones Mathematicae. Probability and Statistics, Tome 31 (2011) no. 1-2, pp. 87-101.

Voir la notice de l'article provenant de la source Library of Science

Many data sets analyzed in human and social sciences have a multilevel or hierarchical structure. By hierarchy we mean that units of a certain level (also referred micro units) are grouped into, or nested within, higher level (or macro) units. In these cases, the units within a cluster tend to be more different than units from other clusters, i.e., they are correlated. Thus, unlike in the classical setting where there exists a single source of variation between observational units, the heterogeneity between clusters introduces an additional source of variation and complicates the analysis.
Keywords: hierarchical linear model, multilevel model, cross-classification models, academic achievement
@article{DMPS_2011_31_1-2_a6,
     author = {Valente, V{\'\i}tor and Oliveira, Teresa},
     title = {Application of {HLM} to data with multilevel structure},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {87--101},
     publisher = {mathdoc},
     volume = {31},
     number = {1-2},
     year = {2011},
     zbl = {1260.62057},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2011_31_1-2_a6/}
}
TY  - JOUR
AU  - Valente, Vítor
AU  - Oliveira, Teresa
TI  - Application of HLM to data with multilevel structure
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2011
SP  - 87
EP  - 101
VL  - 31
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2011_31_1-2_a6/
LA  - en
ID  - DMPS_2011_31_1-2_a6
ER  - 
%0 Journal Article
%A Valente, Vítor
%A Oliveira, Teresa
%T Application of HLM to data with multilevel structure
%J Discussiones Mathematicae. Probability and Statistics
%D 2011
%P 87-101
%V 31
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2011_31_1-2_a6/
%G en
%F DMPS_2011_31_1-2_a6
Valente, Vítor; Oliveira, Teresa. Application of HLM to data with multilevel structure. Discussiones Mathematicae. Probability and Statistics, Tome 31 (2011) no. 1-2, pp. 87-101. http://geodesic.mathdoc.fr/item/DMPS_2011_31_1-2_a6/

[1] W. Browne, MCMC Estimation in MLwiN, Centre of Multilevel Modelling (Institute of Education, University of London, 2004).

[2] A. Bryk and S. Raudenbush, Hierarchical Linear Models: applications and data analysis methods (Sage Publications, London, 1992).

[3] H. Goldstein, Multilevel Statistical Models (2nd Edition, Edward Arnold, London, 1995).

[4] J. Hox, Multilevel Analysis: Techniques and Applications (Lawrence Erlbaum Associates, Mahwah, NJ 2002).

[5] I. Kreft and J. de Leeuw, Introducing Multilevel Modeling (Sage Publications, London, 1998).

[6] MLwiN, version 2.23, Centre for Multilevel Modelling (University of Bristol, 2011). Software authors: J. Rasbash, W. Browne, M. Healy, B. Cameron and C. Charlton.

[7] J. Rasbash and W. Browne, Non-Hierarchical Multilevel Models, in: J. de Leeuw and E. Meijer (eds.), Handbook of Multilevel Analysis (Springer, 2008). doi: 10.1007/978-0-387-73186-5₈

[8] J. Rasbash, F. Steele, W. Browne and B. Prosser, A User's Guide to MLwiN: version 2.0. Centre for Multilevel Modelling (Institute of Education, University of London, London, 2004).

[9] S. Raudenbush and A. Bryk, Hierarchical Linear Models: applications and data analysis methods (2nd Edition, Sage Publications, Thousand Oaks, California, 2002).

[10] T. Richter, What Is Wrong With ANOVA and Multiple Regression? Analyzing Sentence Reading Times With Hierarchical Linear Models, Discourse Processes 41 (3) (2006) 221-250. doi: 10.1207/s15326950dp4103₁

[11] T. Snijders and R. Bosker, Multilevel Analysis: An introduction to basic and advanced multilevel modeling (Sage Publications, London, 1999).

[12] L.M. Sullivan, K.A. Dukes and E. Losina, Tutorial in Biostatistics: an introduction to hierarchical linear modelling, Statistics in Medicine 18 (1999) 855-888.

[13] V. Valente and T.A. Oliveira, Hierarchical Linear Models in Education Sciences: an Application. Biometrical Letters 46 (1) (2009) 71-86.

[14] V. Valente and T.A. Oliveira, Modelos Lineares Hierárquicos na Educação: Uma aplicação. In: Estatística Cięncia Interdisciplinar, Actas do XIV Congresso Anual da SPE - Covilhã, Edições SPE (2007) 827-837.

[15] V. Valente and T.A. Oliveira, 'Diferentes áreas científicas, diferentes notas? Uma aplicação do MLH a alunos do 10° ano', IIWEMC - Workshop de Estatística, Matemática e Computação, Universidade Aberta (Lisboa, 2006) (private communication).