Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2011_31_1-2_a6, author = {Valente, V{\'\i}tor and Oliveira, Teresa}, title = {Application of {HLM} to data with multilevel structure}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {87--101}, publisher = {mathdoc}, volume = {31}, number = {1-2}, year = {2011}, zbl = {1260.62057}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2011_31_1-2_a6/} }
TY - JOUR AU - Valente, Vítor AU - Oliveira, Teresa TI - Application of HLM to data with multilevel structure JO - Discussiones Mathematicae. Probability and Statistics PY - 2011 SP - 87 EP - 101 VL - 31 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2011_31_1-2_a6/ LA - en ID - DMPS_2011_31_1-2_a6 ER -
Valente, Vítor; Oliveira, Teresa. Application of HLM to data with multilevel structure. Discussiones Mathematicae. Probability and Statistics, Tome 31 (2011) no. 1-2, pp. 87-101. http://geodesic.mathdoc.fr/item/DMPS_2011_31_1-2_a6/
[1] W. Browne, MCMC Estimation in MLwiN, Centre of Multilevel Modelling (Institute of Education, University of London, 2004).
[2] A. Bryk and S. Raudenbush, Hierarchical Linear Models: applications and data analysis methods (Sage Publications, London, 1992).
[3] H. Goldstein, Multilevel Statistical Models (2nd Edition, Edward Arnold, London, 1995).
[4] J. Hox, Multilevel Analysis: Techniques and Applications (Lawrence Erlbaum Associates, Mahwah, NJ 2002).
[5] I. Kreft and J. de Leeuw, Introducing Multilevel Modeling (Sage Publications, London, 1998).
[6] MLwiN, version 2.23, Centre for Multilevel Modelling (University of Bristol, 2011). Software authors: J. Rasbash, W. Browne, M. Healy, B. Cameron and C. Charlton.
[7] J. Rasbash and W. Browne, Non-Hierarchical Multilevel Models, in: J. de Leeuw and E. Meijer (eds.), Handbook of Multilevel Analysis (Springer, 2008). doi: 10.1007/978-0-387-73186-5₈
[8] J. Rasbash, F. Steele, W. Browne and B. Prosser, A User's Guide to MLwiN: version 2.0. Centre for Multilevel Modelling (Institute of Education, University of London, London, 2004).
[9] S. Raudenbush and A. Bryk, Hierarchical Linear Models: applications and data analysis methods (2nd Edition, Sage Publications, Thousand Oaks, California, 2002).
[10] T. Richter, What Is Wrong With ANOVA and Multiple Regression? Analyzing Sentence Reading Times With Hierarchical Linear Models, Discourse Processes 41 (3) (2006) 221-250. doi: 10.1207/s15326950dp4103₁
[11] T. Snijders and R. Bosker, Multilevel Analysis: An introduction to basic and advanced multilevel modeling (Sage Publications, London, 1999).
[12] L.M. Sullivan, K.A. Dukes and E. Losina, Tutorial in Biostatistics: an introduction to hierarchical linear modelling, Statistics in Medicine 18 (1999) 855-888.
[13] V. Valente and T.A. Oliveira, Hierarchical Linear Models in Education Sciences: an Application. Biometrical Letters 46 (1) (2009) 71-86.
[14] V. Valente and T.A. Oliveira, Modelos Lineares Hierárquicos na Educação: Uma aplicação. In: Estatística Cięncia Interdisciplinar, Actas do XIV Congresso Anual da SPE - Covilhã, Edições SPE (2007) 827-837.
[15] V. Valente and T.A. Oliveira, 'Diferentes áreas científicas, diferentes notas? Uma aplicação do MLH a alunos do 10° ano', IIWEMC - Workshop de Estatística, Matemática e Computação, Universidade Aberta (Lisboa, 2006) (private communication).