Strictly associated models, prime basis factorials: an application
Discussiones Mathematicae. Probability and Statistics, Tome 31 (2011) no. 1-2, pp. 77-86.

Voir la notice de l'article provenant de la source Library of Science

Mixed models will be considered using the Commutative Jordan Algebra of Symmetric matrices approach. Prime basis factorial models will now be considered in the framework provided by Commutative Jordan Algebra of Symmetric matrices. This will enable to obtain fractional replicates when the number of levels is neither a prime or a power of a prime. We present an application to the effect of lidocaine, at an enzymatic level, on the heart muscle of beagle dogs
Keywords: COBS, strictly associated models, prime basis factorials, inference
@article{DMPS_2011_31_1-2_a5,
     author = {Carvalho, Francisco},
     title = {Strictly associated models, prime basis factorials: an application},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {77--86},
     publisher = {mathdoc},
     volume = {31},
     number = {1-2},
     year = {2011},
     zbl = {1260.62037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2011_31_1-2_a5/}
}
TY  - JOUR
AU  - Carvalho, Francisco
TI  - Strictly associated models, prime basis factorials: an application
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2011
SP  - 77
EP  - 86
VL  - 31
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2011_31_1-2_a5/
LA  - en
ID  - DMPS_2011_31_1-2_a5
ER  - 
%0 Journal Article
%A Carvalho, Francisco
%T Strictly associated models, prime basis factorials: an application
%J Discussiones Mathematicae. Probability and Statistics
%D 2011
%P 77-86
%V 31
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2011_31_1-2_a5/
%G en
%F DMPS_2011_31_1-2_a5
Carvalho, Francisco. Strictly associated models, prime basis factorials: an application. Discussiones Mathematicae. Probability and Statistics, Tome 31 (2011) no. 1-2, pp. 77-86. http://geodesic.mathdoc.fr/item/DMPS_2011_31_1-2_a5/

[1] M. Fonseca, J.T. Mexia and R. Zmyślony, Binary Operation on Jordan algebras and orthogonal normal models, Linear Algebra and its Applications 417 (2006) 75-86.

[2] V.M. Jesus, J.T. Mexia and M.M. Oliveira, Binary Operations on Prime Basis Factorials, Biometric Letters 46 (1) (2009) 1-14.

[3] V.M. Jesus, J.T. Mexia, M. Fonseca and R. Zmyślony, Binary Operations and Canonical Forms for Factorial and Related Models, Linear Algebra and its Applications 430 (2009) 2781-2797.

[4] P. Jordan, J. von Neumann and E. Wigner, On the algebraic generalization of the quantum mechanical formalism, Ann. of Math. 36 (1934) 26-64.

[5] E.L. Lehman, Testing Statistical Hypothesis (John Wiley Son, 2nd ed., 1986).

[6] D.C. Montegomery, Design and Analysis of Experiments (John Wiley Sons, 2005).

[7] J. Seely, Linear spaces and unbiased estimators, The Annals of Mathematical Statistics 41 (1970a) 1735-1745.

[8] J. Seely, Linear spaces and unbiased estimators. Application to a mixed linear model, The Annals of Mathematical Statistics 41 (1970b) 1735-1745.

[9] J. Seely, Quadratic subspaces and completeness, The Annals of Mathematical Statistics 42 (1971) 710-721.

[10] J. Seely and G. Zyskind, Linear spaces and minimum variance estimators, The Annals of Mathematical Statistics 42 (1971) 691-703.