On the universal constant in the Katz-Petrov and Osipov inequalities
Discussiones Mathematicae. Probability and Statistics, Tome 31 (2011) no. 1-2, pp. 29-39.

Voir la notice de l'article provenant de la source Library of Science

Upper estimates are presented for the universal constant in the Katz-Petrov and Osipov inequalities which do not exceed 3.1905.
Keywords: central limit theorem, convergence rate estimate, absolute constant, Katz-Petrov inequality, Osipov inequality
@article{DMPS_2011_31_1-2_a1,
     author = {Korolev, Victor and Popov, Sergey},
     title = {On the universal constant in the {Katz-Petrov} and {Osipov} inequalities},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {29--39},
     publisher = {mathdoc},
     volume = {31},
     number = {1-2},
     year = {2011},
     zbl = {1258.60025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2011_31_1-2_a1/}
}
TY  - JOUR
AU  - Korolev, Victor
AU  - Popov, Sergey
TI  - On the universal constant in the Katz-Petrov and Osipov inequalities
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2011
SP  - 29
EP  - 39
VL  - 31
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2011_31_1-2_a1/
LA  - en
ID  - DMPS_2011_31_1-2_a1
ER  - 
%0 Journal Article
%A Korolev, Victor
%A Popov, Sergey
%T On the universal constant in the Katz-Petrov and Osipov inequalities
%J Discussiones Mathematicae. Probability and Statistics
%D 2011
%P 29-39
%V 31
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2011_31_1-2_a1/
%G en
%F DMPS_2011_31_1-2_a1
Korolev, Victor; Popov, Sergey. On the universal constant in the Katz-Petrov and Osipov inequalities. Discussiones Mathematicae. Probability and Statistics, Tome 31 (2011) no. 1-2, pp. 29-39. http://geodesic.mathdoc.fr/item/DMPS_2011_31_1-2_a1/

[1] R.N. Bhattacharya and R. Ranga Rao, Normal Approximation and Asymptotic Expansions (New York, Wiley, 1976).

[2] L.H.Y. Chen and Q.M. Shao, A non-uniform Berry-Esseen bound via Stein's method, Probability Theory and Related Fields 120 (2001) 236-254.

[3] W. Hoeffding, The extrema of the expected value of a function of independent random variables, Ann. Math. Statist. 19 (1948) 239-325.

[4] M. Katz, Note on the Berry-Esseen theorem, Annals of Math. Statist. 39 (4) (1963) 1348-1349.

[5] V.Yu. Korolev and I.G. Shevtsova, An improvement of the Berry-Esseen inequality with applications to Poisson and mixed Poisson random sums, Scandinavian Actuarial Journal, 2010. Online first: http://www.informaworld.com/10.1080/03461238.2010.485370, 04 June 2010.

[6] J.S. Nefedova and I.G. Shevtsova, On non-uniform estimates of convergence rate in the central limit theorem, Theory Probab. Appl. 56 (2011), to appear.

[7] L.V. Osipov, A refinement of the Lindeberg theorem, Theory Probab. Appl. 11 (2) (1966) 339-342.

[8] L. Paditz, Bemerkungen zu einer Fehlerabschätzung im zentralen Grenzwertsatz, Wiss. Z. Hochschule für Verkehrswesen Friedrich List 27 (4) (1980) 829-837.

[9] L. Paditz, On error-estimates in the central limit theorem for generalized linear discounting, Math. Operationsforsch. u. Statist., Ser. Statistics 15 (4) (1984) 601-610.

[10] L. Paditz, Über eine Fehlerabschätzung im zentralen Grenzwertsatz, Wiss. Z. Hochschule für Verkehrswesen Friedrich List Dresden 33 (2) (1986) 399-404.

[11] V.V. Petrov, An estimate of the deviation of the distribution of a sum of independent random variables from the normal law, Soviet Math. Dokl. 160 (5) (1965) 1013-1015.

[12] V.V. Petrov, Sums of Independent Random Variables (New York, Springer, 1975).

[13] I.G. Shevtsova, A refinement of the estimates of the rate of convergence in the Lyapunov theorem, Doklady Mathematics 435 (1) (2010) 26-28.