Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2011_31_1-2_a0, author = {Krzy\'sko, Miros{\l}aw and Skorzybut, Micha{\l} and Wo{\l}y\'nski, Waldemar}, title = {Classifiers for doubly multivariate data}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {5--27}, publisher = {mathdoc}, volume = {31}, number = {1-2}, year = {2011}, zbl = {1260.62044}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2011_31_1-2_a0/} }
TY - JOUR AU - Krzyśko, Mirosław AU - Skorzybut, Michał AU - Wołyński, Waldemar TI - Classifiers for doubly multivariate data JO - Discussiones Mathematicae. Probability and Statistics PY - 2011 SP - 5 EP - 27 VL - 31 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2011_31_1-2_a0/ LA - en ID - DMPS_2011_31_1-2_a0 ER -
%0 Journal Article %A Krzyśko, Mirosław %A Skorzybut, Michał %A Wołyński, Waldemar %T Classifiers for doubly multivariate data %J Discussiones Mathematicae. Probability and Statistics %D 2011 %P 5-27 %V 31 %N 1-2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2011_31_1-2_a0/ %G en %F DMPS_2011_31_1-2_a0
Krzyśko, Mirosław; Skorzybut, Michał; Wołyński, Waldemar. Classifiers for doubly multivariate data. Discussiones Mathematicae. Probability and Statistics, Tome 31 (2011) no. 1-2, pp. 5-27. http://geodesic.mathdoc.fr/item/DMPS_2011_31_1-2_a0/
[1] K.M. Abadir and J.R. Magnus, Matrix Algebra (Cambridge University Press, New York, 2005). doi: 10.1017/CBO9780511810800.
[2] A.T. Galecki, General class of covariance structures for two or more repeated factors in longitudinal data analysis, Communications in Statistics - Theory and Methods 23 (1994) 3105-3119. doi: 10.1080/03610929408831436.
[3] N.C. Giri, Multivariate Statistical Analysis (Marcel Dekker, Inc., New York, 1996).
[4] D.N. Naik and S. Rao, Analysis of multivariate repeated measures data with a Kronecker product structured covariance matrix, J. Appl. Statist. 28 (2001) 91-105. doi: 10.1080/02664760120011626.
[5] A. Roy and R. Khattree, Discrimination and classification with repeated measures data under different covariance structures, Communications in Statistics - Simulation and Computation 34 (2005a) 167-178. doi: 10.1081/SAC-200047072.
[6] A. Roy and R. Khattree, On discrimination and classification with multivariate repeated measures data, Journal of Statistical Planning and Inference 134 (2005b) 462-485. doi: 10.1016/j.jspi.2004.04.012.
[7] A. Roy and R. Khattree, Classification rules for repeated measures data from biomedical research, in: Computational methods in biomedical research, R. Khattree, D.N. Naik (Ed(s)), (Chapman and Hall/CRC, 2008) 323-370.
[8] SAS Institute Inc., SAS procedures guide, Version 6, Third Edition (Cary, NC: SAS Institute Inc, 1990).
[9] G.A.F. Seber, Multivariate Observations (Wiley, New York, 1984). doi: 10.1002/9780470316641.
[10] S.M. Srivastava, T. von Rosen and D. von Rosen, Models with a Kronecker product covariance structure: estimation and testing, Math. Methods Stat. 17(4) (2008) 357-370. doi: 10.3103/S1066530708040066.
[11] A. Wald, Tests of statistical hypotheses concerning several parameters when the number of observations is large, Transactions of the American Mathematical Society 54 (1943) 426-483. doi: 10.1090/S0002-9947-1943-0012401-3.