Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2010_30_2_a3, author = {Fernandes, C\'elia and Ramos, Paulo and Mexia, Jo\~ao}, title = {Algebraic structureof step nesting designs}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {221--235}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2010}, zbl = {1272.62051}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2010_30_2_a3/} }
TY - JOUR AU - Fernandes, Célia AU - Ramos, Paulo AU - Mexia, João TI - Algebraic structureof step nesting designs JO - Discussiones Mathematicae. Probability and Statistics PY - 2010 SP - 221 EP - 235 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2010_30_2_a3/ LA - en ID - DMPS_2010_30_2_a3 ER -
Fernandes, Célia; Ramos, Paulo; Mexia, João. Algebraic structureof step nesting designs. Discussiones Mathematicae. Probability and Statistics, Tome 30 (2010) no. 2, pp. 221-235. http://geodesic.mathdoc.fr/item/DMPS_2010_30_2_a3/
[1] D. Cox and P. Salomon, Components of Variance, Chapman Hall, New York 2003.
[2] H. Drygas and R. Zmyślony, Jordan algebras and Bayesian quadratic estimation of variance components, Linear Algebra and it's Applications 168 (1992), 259-275.
[3] P. Jordan, J. von Neumann and E. Wigner, On a algebraic generalization of the quantum mechanical formulation, The Annals of Mathematics 35-1, 2nd Ser. (1934), 29-64.
[4] J. Malley, Statistical Applications of Jordan Algebras, Springer-Verlag 2004.
[5] A. Michalski and R. Zmyślony, Testing hypothesis for variance components in mixed linear models, Statistics 27 (1996), 297-310.
[6] A. Michalski and R. Zmyślony, Testing hypothesis for linear functions of parameters in mixed linear models, Tatra Mountain Mathematical Publications 1999.
[7] J. Nelder, The interpretation of negative components of variance, Biometrika 41 (1954), 544-548.
[8] C. Rao and M. Rao, Matrix Algebras and Its Applications to Statistics and Econometrics, World Scientific 1998.
[9] J. Seely, Linear spaces and unbiased estimaton, The Annals of Mathematical Statistics 41-5 (1970a), 1725-1734.
[10] J. Seely, Linear spaces and unbiased estimators - Application to the mixed linear model, The Annals of Mathematical Statistics 41-5 (1970b), 1735-1745.
[11] J. Seely, Quadratic subspaces and completeness, The Annals of Mathematical Statistics 42-2 (1971), 710-721.
[12] J. Seely and G. Zyskind, Linear Spaces and minimum variance estimation, The Annals of Mathematical Statistics 42-2 (1971), 691-703.
[13] J. Seely, Completeness for a family of multivariate normal distribution, The Annals of Mathematical Statistics 43 (1972), 1644-1647.
[14] J. Seely, Minimal suffcient statistics and completeness for multivariate normal families, Sankhya 39 (1977), 170-185.
[15] S. Silvey, Statistical Inference, CRC Monographs on Statistics Applied Probability, Chapman Hall 1975.
[16] D. Vanaleuween, J. Seely and D. Birkes, Sufficient conditions for orthogonal designs in mixed linear models, Journal of Statistical Planning and Inference 73 (1998), 373-389.
[17] D. Vanaleuween, D. Birkes and J. Seely, Balance and orthogonality in designs for mixed classification models, The Annals of Statistics 27-6 (1999), 1927-1947.
[18] R. Zmyślony, A characterization of best linear unbiased estimators in the general linear model, pp. 365-373 in: Mathematical Statistics and Probability Theory, Proc. Sixth Internat. Conf., Wisła, 1978, Lecture Notes in Statist., 2, Springer, New York-Berlin.