Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2010_30_2_a0, author = {Pipiras, Vladas and Taqqu, Murad}, title = {Semi-additive functionals and cocycles in the context of self-similarity}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {149--177}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2010}, zbl = {1235.60035}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2010_30_2_a0/} }
TY - JOUR AU - Pipiras, Vladas AU - Taqqu, Murad TI - Semi-additive functionals and cocycles in the context of self-similarity JO - Discussiones Mathematicae. Probability and Statistics PY - 2010 SP - 149 EP - 177 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2010_30_2_a0/ LA - en ID - DMPS_2010_30_2_a0 ER -
%0 Journal Article %A Pipiras, Vladas %A Taqqu, Murad %T Semi-additive functionals and cocycles in the context of self-similarity %J Discussiones Mathematicae. Probability and Statistics %D 2010 %P 149-177 %V 30 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2010_30_2_a0/ %G en %F DMPS_2010_30_2_a0
Pipiras, Vladas; Taqqu, Murad. Semi-additive functionals and cocycles in the context of self-similarity. Discussiones Mathematicae. Probability and Statistics, Tome 30 (2010) no. 2, pp. 149-177. http://geodesic.mathdoc.fr/item/DMPS_2010_30_2_a0/
[1] N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular Variation, Cambridge University Press 1987.
[2] I.P. Cornfeld, S.V. Fomin and Y.G. Sinai, Ergodic Theory, Springer-Verlag 1982.
[3] C.D. Jr. Hardin, Isometries on subspaces of $L^p$, Indiana University Mathematics Journal 30 (1981), 449-465.
[4] S. Kolodyński and J. Rosiński, Group self-similar stable processes in $ℝ^d$, Journal of Theoretical Probability 16 (4) (2002), 855-876.
[5] I. Kubo, Quasi-flows, Nagoya Mathematical Journal 35 (1969), 1-30.
[6] I. Kubo, Quasi-flows II: Additive functionals and TQ-systems, Nagoya Mathematical Journal 40 (1970), 39-66.
[7] V. Pipiras and M.S. Taqqu, Decomposition of self-similar stable mixed moving averages, Probability Theory and Related Fields 123 (3)(2002 a), 412-452.
[8] V. Pipiras and M.S. Taqqu, The structure of self-similar stable mixed moving averages, The Annals of Probability 30 (2) (2002 b), 898-932.
[9] V. Pipiras and M.S. Taqqu, Stable stationary processes related to cyclic flows, The Annals of Probability 32 (3A) (2004), 2222-2260.
[10] Preprint. Available at http://www.stat.unc.edu/faculty/pipiras/preprints/articles.html.
[11] J. Rosiński, On the structure of stationary stable processes, The Annals of Probability 23 (1995), 1163-1187.
[12] R.J. Zimmer, Ergodic Theory and Semisimple Groups, Birkhäuser, Boston 1984.