Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2010_30_1_a2, author = {Gomes, M. and Henriques-Rodrigues, L{\'\i}gia}, title = {Comparison at optimal levels of classical tail index estimators: a challenge for reduced-bias estimation?}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {35--51}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2010}, zbl = {1208.62086}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a2/} }
TY - JOUR AU - Gomes, M. AU - Henriques-Rodrigues, Lígia TI - Comparison at optimal levels of classical tail index estimators: a challenge for reduced-bias estimation? JO - Discussiones Mathematicae. Probability and Statistics PY - 2010 SP - 35 EP - 51 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a2/ LA - en ID - DMPS_2010_30_1_a2 ER -
%0 Journal Article %A Gomes, M. %A Henriques-Rodrigues, Lígia %T Comparison at optimal levels of classical tail index estimators: a challenge for reduced-bias estimation? %J Discussiones Mathematicae. Probability and Statistics %D 2010 %P 35-51 %V 30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a2/ %G en %F DMPS_2010_30_1_a2
Gomes, M.; Henriques-Rodrigues, Lígia. Comparison at optimal levels of classical tail index estimators: a challenge for reduced-bias estimation?. Discussiones Mathematicae. Probability and Statistics, Tome 30 (2010) no. 1, pp. 35-51. http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a2/
[1] P. Araújo Santos, M.I. Fraga Alves and M.I. Gomes, Peaks over random threshold methodology for tail index and quantile estimation, Revstat 4 (3) (2006), 227-247.
[2] J. Beirlant, G. Dierckx and A. Guillou, Estimation of the extreme-value index and generalized quantile plots, Bernoulli 11 (6) (2005), 949-970.
[3] J. Beirlant, P. Vynckier and J.L. Teugels, Excess functions and estimation of the extreme-value index, Bernoulli 2 (1996), 293-318.
[4] N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular Variation, Cambridge Univ. Press 1987.
[5] F. Caeiro, M.I. Gomes and D.D. Pestana, Direct reduction of bias of the classical Hill estimator, Revstat 3 (2) (2005), 113-136.
[6] A. Davison, Modeling excesses over high threshold with an application, In J. Tiago de Oliveira ed., Statistical Extremes and Applications, D. Reidel (1984), 461-482.
[7] A. Dekkers, J. Einmahl and L. de Haan, A moment estimator for the index of an extreme-value distribution, Annals of Statistics 17 (1989), 1833-1855.
[8] A. Dekkers and L. de Haan, Optimal sample fraction in extreme value estimation, J. Multivariate Analysis 47 (2) (1993), 173-195.
[9] H. Drees, A. Ferreira and L. de Haan, On maximum likelihood estimation of the extreme value index, Ann. Appl. Probab. 14 (2004), 1179-1201.
[10] M.I. Fraga Alves, M.I. Gomes and L. de Haan, A new class of semi-parametric estimators of the second order parameter, Portugaliae Mathematica 60 (2) (2003), 193-214.
[11] M.I. Fraga Alves, M.I. Gomes, L. de Haan and C. Neves, The mixed moment estimator and location invariant alternatives, Extremes, 12 (2009), 149-185.
[12] J. Geluk and L. de Haan, Regular Variation, Extensions and Tauberian Theorems, CWI Tract 40, Center for Mathematics and Computer Science, Amsterdam, Netherlands 1987.
[13] B.V. Gnedenko, Sur la distribution limite du terme maximum d'une série aléatoire, Ann. Math. 44 (1943), 423-453.
[14] M.I. Gomes, M.I. Fraga Alves, and P.A. Santos, PORT Hill and Moment Estimators for Heavy-Tailed Models, Commun. Statist. - Simul. Comput. 37 (2008a), 1281-1306.
[15] M.I. Gomes, L. de Haan and L. Henriques-Rodrigues, Tail index estimation through accommodation of bias in the weighted log-excesses, J. Royal Statistical Society B70 (1) (2008b), 31-52.
[16] M.I. Gomes and L. Henriques-Rodrigues, Tail index estimation for heavy tails: accommodation of bias in the excesses over a high threshold, Extremes, 11 (3) (2008), 303-328.
[17] M.I. Gomes and M.J. Martins, Alternatives to Hill's estimator - asymptotic versus finite sample behaviour, J. Statist. Planning and Inference 93 (2001), 161-180.
[18] M.I. Gomes and M.J. Martins, 'Asymptotically unbiased' estimators of the tail index based on external estimation of the second order parameter, Extremes 5 (1) (2002), 5-31.
[19] M.I. Gomes, C. Miranda and H. Pereira, Revisiting the role of the Jackknife methodology in the estimation of a positive extreme value index, Comm. in Statistics - Theory and Methods 34 (2005), 1-20.
[20] M.I. Gomes, C. Miranda and C. Viseu, Reduced bias extreme value index estimation and the Jackknife methodology, Statistica Neerlandica 61 (2) (2007) 243-270.
[21] M.I. Gomes and C. Neves, Asymptotic comparison of the mixed moment and classical extreme value index estimators, Statistics and Probability Letters 78 (6) (2008), 643-653.
[22] M.I. Gomes and D. Pestana, A sturdy reduced-bias extreme quantile (VaR) estimator, J. American Statistical Association 102 (477) (2007), 280-292.
[23] L. de Haan, On Regular Variation and its Application to the Weak Convergence of Sample Extremes, Mathematical Centre Tract 32, Amsterdam 1970.
[24] L. de Haan and A. Ferreira, Extreme Value Theory: an Introduction, Springer Science+Business Media, LLC, New York 2006.
[25] L. de Haan and L. Peng, Comparison of tail index estimators, Statistica Neerlandica 52 (1998), 60-70.
[26] P. Hall and A.H. Welsh, Adaptive estimates of parameters of regular variation, Ann. Statist. 13 (1985), 331-341.
[27] B.M. Hill, A simple general approach to inference about the tail of a distribution, Ann. Statist. 3 (1975), 1163-1174.
[28] V. Pareto, Oeuvres Complétes, Geneva, Droz. 1965.
[29] R.L. Smith, Estimating tails of probability distributions, Ann. Statist. 15 (3) (1987), 1174-1207.
[30] G.K. Zipf, National Unity and Disunity, Blomington, in: Principia Press 1941.