An asymptotically unbiased moment estimator of a negative extreme value index
Discussiones Mathematicae. Probability and Statistics, Tome 30 (2010) no. 1, pp. 5-19.

Voir la notice de l'article provenant de la source Library of Science

In this paper we consider a new class of consistent semi-parametric estimators of a negative extreme value index, based on the set of the k largest observations. This class of estimators depends on a control or tuning parameter, which enables us to have access to an estimator with a null second-order component of asymptotic bias, and with a rather interesting mean squared error, as a function of k. We study the consistency and asymptotic normality of the proposed estimators. Their finite sample behaviour is obtained through Monte Carlo simulation.
Keywords: extreme value index, semi-parametric estimation, moment estimator
@article{DMPS_2010_30_1_a0,
     author = {Caeiro, Frederico and Gomes, M.},
     title = {An asymptotically unbiased moment estimator of a negative extreme value index},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {5--19},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2010},
     zbl = {1208.62084},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a0/}
}
TY  - JOUR
AU  - Caeiro, Frederico
AU  - Gomes, M.
TI  - An asymptotically unbiased moment estimator of a negative extreme value index
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2010
SP  - 5
EP  - 19
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a0/
LA  - en
ID  - DMPS_2010_30_1_a0
ER  - 
%0 Journal Article
%A Caeiro, Frederico
%A Gomes, M.
%T An asymptotically unbiased moment estimator of a negative extreme value index
%J Discussiones Mathematicae. Probability and Statistics
%D 2010
%P 5-19
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a0/
%G en
%F DMPS_2010_30_1_a0
Caeiro, Frederico; Gomes, M. An asymptotically unbiased moment estimator of a negative extreme value index. Discussiones Mathematicae. Probability and Statistics, Tome 30 (2010) no. 1, pp. 5-19. http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a0/

[1] [1] F. Caeiro, M.I. Gomes and D.D. Pestana, Direct reduction of bias of the classical Hill estimator, Revstat 3 (2) (2005), 113-136.

[2] [2] A.L.M. Dekkers, J.H.J. Einmahl and L. de Haan, A moment estimator for the index of an extreme-value distribution, The Annals of Statistics 17 (4) (1989), 1833-1855.

[3] [3]G. Draisma, L. de Haan, L. Peng and T. Themido Pereira, A bootstrap-based method to achieve optimality in estimating the extreme value index, Extremes 2 (4) (1999), 367-404.

[4] [4] M.I. Fraga Alves, Weiss-Hill estimator, Test 10 (2001), 203-224.

[5] [5] B.V. Gnedenko, Sur la distribution limite du terme maximum d'une série aléatoire, Ann. Math. 44 (1943), 423-453.

[6] [6] M.I. Gomes, L. de Haan and L. Henriques Rodrigues, Tail Index estimation for heavy-tailed models: accommodation of bias in weighted log-excesses, J. R. Stat. Soc. Ser. B 70 (1) (2008), 31-52.

[7] [7] M.I. Gomes, M.J. Martins and M.M. Neves, Improving second order reduced-bias tail index estimation, Revstat 5 (2) (2007), 177-207.

[8] [8] M.I. Gomes and C. Neves, Asymptotic comparison of the mixed moment and classical extreme value index estimators, Statistics Probability Letters 78 (2008), 643-653.

[9] [9] M.I. Gomes and O. Oliveira, The bootstrap methodology in Statistics of Extremes - choice of the optimal sample fraction, Extremes 4 (4) (2001), 331-358.

[10] [10] L. de Haan, On Regular Variation and its Application to the Weak Convergence of Sample Extremes, Mathematical Centre Tract 32, Amesterdam 1970.

[11] [11] L. de Haan and A. Ferreira, Extreme Value Theory: an Introduction, Springer, LLC New York 2006.

[12] [12] B.M. Hill, A Simple General Approach to Inference About the Tail of a Distribution, The Annals of Statistics 3 (5) (1975), 1163-1174.