Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2010_30_1_a0, author = {Caeiro, Frederico and Gomes, M.}, title = {An asymptotically unbiased moment estimator of a negative extreme value index}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {5--19}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2010}, zbl = {1208.62084}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a0/} }
TY - JOUR AU - Caeiro, Frederico AU - Gomes, M. TI - An asymptotically unbiased moment estimator of a negative extreme value index JO - Discussiones Mathematicae. Probability and Statistics PY - 2010 SP - 5 EP - 19 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a0/ LA - en ID - DMPS_2010_30_1_a0 ER -
%0 Journal Article %A Caeiro, Frederico %A Gomes, M. %T An asymptotically unbiased moment estimator of a negative extreme value index %J Discussiones Mathematicae. Probability and Statistics %D 2010 %P 5-19 %V 30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a0/ %G en %F DMPS_2010_30_1_a0
Caeiro, Frederico; Gomes, M. An asymptotically unbiased moment estimator of a negative extreme value index. Discussiones Mathematicae. Probability and Statistics, Tome 30 (2010) no. 1, pp. 5-19. http://geodesic.mathdoc.fr/item/DMPS_2010_30_1_a0/
[1] [1] F. Caeiro, M.I. Gomes and D.D. Pestana, Direct reduction of bias of the classical Hill estimator, Revstat 3 (2) (2005), 113-136.
[2] [2] A.L.M. Dekkers, J.H.J. Einmahl and L. de Haan, A moment estimator for the index of an extreme-value distribution, The Annals of Statistics 17 (4) (1989), 1833-1855.
[3] [3]G. Draisma, L. de Haan, L. Peng and T. Themido Pereira, A bootstrap-based method to achieve optimality in estimating the extreme value index, Extremes 2 (4) (1999), 367-404.
[4] [4] M.I. Fraga Alves, Weiss-Hill estimator, Test 10 (2001), 203-224.
[5] [5] B.V. Gnedenko, Sur la distribution limite du terme maximum d'une série aléatoire, Ann. Math. 44 (1943), 423-453.
[6] [6] M.I. Gomes, L. de Haan and L. Henriques Rodrigues, Tail Index estimation for heavy-tailed models: accommodation of bias in weighted log-excesses, J. R. Stat. Soc. Ser. B 70 (1) (2008), 31-52.
[7] [7] M.I. Gomes, M.J. Martins and M.M. Neves, Improving second order reduced-bias tail index estimation, Revstat 5 (2) (2007), 177-207.
[8] [8] M.I. Gomes and C. Neves, Asymptotic comparison of the mixed moment and classical extreme value index estimators, Statistics Probability Letters 78 (2008), 643-653.
[9] [9] M.I. Gomes and O. Oliveira, The bootstrap methodology in Statistics of Extremes - choice of the optimal sample fraction, Extremes 4 (4) (2001), 331-358.
[10] [10] L. de Haan, On Regular Variation and its Application to the Weak Convergence of Sample Extremes, Mathematical Centre Tract 32, Amesterdam 1970.
[11] [11] L. de Haan and A. Ferreira, Extreme Value Theory: an Introduction, Springer, LLC New York 2006.
[12] [12] B.M. Hill, A Simple General Approach to Inference About the Tail of a Distribution, The Annals of Statistics 3 (5) (1975), 1163-1174.