On the matrix form of Kronecker lemma
Discussiones Mathematicae. Probability and Statistics, Tome 29 (2009) no. 2, pp. 233-243.

Voir la notice de l'article provenant de la source Library of Science

A matrix generalization of Kronecker's lemma is presented with assumptions that make it possible not only the unboundedness of the condition number considered by Anderson and Moore (1976) but also other sequences of real matrices, not necessarily monotone increasing, symmetric and nonnegative definite. A useful matrix decomposition and a well-known equivalent result about convergent series are used in this generalization.
Keywords: matrix Kronecker lemma, matrix analysis, convergence
@article{DMPS_2009_29_2_a8,
     author = {da Silva, Jo\~ao and Oliveira, Ant\'onio},
     title = {On the matrix form of {Kronecker} lemma},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {233--243},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2009},
     zbl = {1208.15025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a8/}
}
TY  - JOUR
AU  - da Silva, João
AU  - Oliveira, António
TI  - On the matrix form of Kronecker lemma
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2009
SP  - 233
EP  - 243
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a8/
LA  - en
ID  - DMPS_2009_29_2_a8
ER  - 
%0 Journal Article
%A da Silva, João
%A Oliveira, António
%T On the matrix form of Kronecker lemma
%J Discussiones Mathematicae. Probability and Statistics
%D 2009
%P 233-243
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a8/
%G en
%F DMPS_2009_29_2_a8
da Silva, João; Oliveira, António. On the matrix form of Kronecker lemma. Discussiones Mathematicae. Probability and Statistics, Tome 29 (2009) no. 2, pp. 233-243. http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a8/

[1] B.D.O. Anderson and J.B. Moore, A Matrix Kronecker Lemma, Linear Algebra Appl. 15 (1976), 227-234.

[2] Y.S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingales, Springer 1997.

[3] R.A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press 1985.

[4] B M. Makarov, M.G. Goluzina, A.A. Lodkin and A.N. Podkorytov, Selected Problems in Real Analysis, American Mathematical Society 1992.