Generalized F tests in models with random perturbations: the gamma case
Discussiones Mathematicae. Probability and Statistics, Tome 29 (2009) no. 2, pp. 185-197.

Voir la notice de l'article provenant de la source Library of Science

Generalized F tests were introduced for linear models by Michalski and Zmyślony (1996, 1999). When the observations are taken in not perfectly standardized conditions the F tests have generalized F distributions with random non-centrality parameters, see Nunes and Mexia (2006). We now study the case of nearly normal perturbations leading to Gamma distributed non-centrality parameters.
Keywords: generalized F distributions, random non-centrality parameters, Gamma distribution
@article{DMPS_2009_29_2_a5,
     author = {Pinto Nunes, C\'elia and Barg\~ao Saraiva Ferreira, Sandra and da Concei\c{c}\~ao Ferreira, D\'ario},
     title = {Generalized {F} tests in models with random perturbations: the gamma case},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {185--197},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2009},
     zbl = {1208.62024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a5/}
}
TY  - JOUR
AU  - Pinto Nunes, Célia
AU  - Bargão Saraiva Ferreira, Sandra
AU  - da Conceição Ferreira, Dário
TI  - Generalized F tests in models with random perturbations: the gamma case
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2009
SP  - 185
EP  - 197
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a5/
LA  - en
ID  - DMPS_2009_29_2_a5
ER  - 
%0 Journal Article
%A Pinto Nunes, Célia
%A Bargão Saraiva Ferreira, Sandra
%A da Conceição Ferreira, Dário
%T Generalized F tests in models with random perturbations: the gamma case
%J Discussiones Mathematicae. Probability and Statistics
%D 2009
%P 185-197
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a5/
%G en
%F DMPS_2009_29_2_a5
Pinto Nunes, Célia; Bargão Saraiva Ferreira, Sandra; da Conceição Ferreira, Dário. Generalized F tests in models with random perturbations: the gamma case. Discussiones Mathematicae. Probability and Statistics, Tome 29 (2009) no. 2, pp. 185-197. http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a5/

[1] R.B. Davies, Algorithm AS 155: The distribution of a linear combinations of χ² random variables, Applied Statistics 29 (1980), 232-333.

[2] J.P. Imhof, Computing the distribution of quadratic forms in normal variables, Biometrika 48 (1961), 419-426.

[3] M. Fonseca, J.T. Mexia and R. Zmyślony, Exact distribution for the generalized F tests, Discuss. Math. Probab. Stat. 22 (2002), 37-51.

[4] M. Fonseca, J.T. Mexia and R. Zmyślony, Estimators and Tests for Variance Components in Cross Nested Orthogonal Designs, Discuss. Math. Probab. Stat. 23 (2) (2003a), 175-201.

[5] M. Fonseca, J.T. Mexia and R. Zmyślony, Estimating and testing of variance components: an application to a grapevine experiment, Biometrical Letters 40 (1) (2003b), 1-7.

[6] D.W. Gaylor and F.N. Hopper, Estimating the degrees of freedom for linear combinations of mean squares by Satterthwaite's formula, Technometrics 11 (1969), 691-706.

[7] A.I. Khuri, T. Mathew and B.K. Sinha, Statistical Tests for Mixed Linear Models, A Wiley-Interscience Publication. John Wiley Sons, Inc., New York 1998.

[8] A. Michalski and R. Zmyślony, Testing hypothesis for variance components in mixed linear models, Statistics 27 (1996), 297-310.

[9] A. Michalski and R. Zmyślony, Testing hypothesis for linear functions of parameters in mixed linear models, Tatra Mountain Mathematical Publications 17 (1999), 103-110.

[10] C. Nunes and J.T. Mexia, Non-central generalized F distributions, Discuss. Math. Probab. Stat. 26 (1) (2006), 47-61.

[11] C. Nunes, I. Pinto and J.T. Mexia, F and Selective F tests with balanced cross-nesting and associated models, Discuss. Math. Probab. Stat. 26 (2) (2006), 193-205.

[12] H. Robbins, Mixture of distribution, Ann. Math. Statistics 19 (1948), 360-369.

[13] H. Robbins and E.J.G. Pitman, Application of the method of mixtures to quadratic forms in normal variates, Ann. Math. Statistics 20 (1949), 552-560.

[14] F.E. Satterthwaite, An approximate distribution of estimates of variance components, Biometrics Bulletin 2 (1946), 110-114.