Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2009_29_2_a5, author = {Pinto Nunes, C\'elia and Barg\~ao Saraiva Ferreira, Sandra and da Concei\c{c}\~ao Ferreira, D\'ario}, title = {Generalized {F} tests in models with random perturbations: the gamma case}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {185--197}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2009}, zbl = {1208.62024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a5/} }
TY - JOUR AU - Pinto Nunes, Célia AU - Bargão Saraiva Ferreira, Sandra AU - da Conceição Ferreira, Dário TI - Generalized F tests in models with random perturbations: the gamma case JO - Discussiones Mathematicae. Probability and Statistics PY - 2009 SP - 185 EP - 197 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a5/ LA - en ID - DMPS_2009_29_2_a5 ER -
%0 Journal Article %A Pinto Nunes, Célia %A Bargão Saraiva Ferreira, Sandra %A da Conceição Ferreira, Dário %T Generalized F tests in models with random perturbations: the gamma case %J Discussiones Mathematicae. Probability and Statistics %D 2009 %P 185-197 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a5/ %G en %F DMPS_2009_29_2_a5
Pinto Nunes, Célia; Bargão Saraiva Ferreira, Sandra; da Conceição Ferreira, Dário. Generalized F tests in models with random perturbations: the gamma case. Discussiones Mathematicae. Probability and Statistics, Tome 29 (2009) no. 2, pp. 185-197. http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a5/
[1] R.B. Davies, Algorithm AS 155: The distribution of a linear combinations of χ² random variables, Applied Statistics 29 (1980), 232-333.
[2] J.P. Imhof, Computing the distribution of quadratic forms in normal variables, Biometrika 48 (1961), 419-426.
[3] M. Fonseca, J.T. Mexia and R. Zmyślony, Exact distribution for the generalized F tests, Discuss. Math. Probab. Stat. 22 (2002), 37-51.
[4] M. Fonseca, J.T. Mexia and R. Zmyślony, Estimators and Tests for Variance Components in Cross Nested Orthogonal Designs, Discuss. Math. Probab. Stat. 23 (2) (2003a), 175-201.
[5] M. Fonseca, J.T. Mexia and R. Zmyślony, Estimating and testing of variance components: an application to a grapevine experiment, Biometrical Letters 40 (1) (2003b), 1-7.
[6] D.W. Gaylor and F.N. Hopper, Estimating the degrees of freedom for linear combinations of mean squares by Satterthwaite's formula, Technometrics 11 (1969), 691-706.
[7] A.I. Khuri, T. Mathew and B.K. Sinha, Statistical Tests for Mixed Linear Models, A Wiley-Interscience Publication. John Wiley Sons, Inc., New York 1998.
[8] A. Michalski and R. Zmyślony, Testing hypothesis for variance components in mixed linear models, Statistics 27 (1996), 297-310.
[9] A. Michalski and R. Zmyślony, Testing hypothesis for linear functions of parameters in mixed linear models, Tatra Mountain Mathematical Publications 17 (1999), 103-110.
[10] C. Nunes and J.T. Mexia, Non-central generalized F distributions, Discuss. Math. Probab. Stat. 26 (1) (2006), 47-61.
[11] C. Nunes, I. Pinto and J.T. Mexia, F and Selective F tests with balanced cross-nesting and associated models, Discuss. Math. Probab. Stat. 26 (2) (2006), 193-205.
[12] H. Robbins, Mixture of distribution, Ann. Math. Statistics 19 (1948), 360-369.
[13] H. Robbins and E.J.G. Pitman, Application of the method of mixtures to quadratic forms in normal variates, Ann. Math. Statistics 20 (1949), 552-560.
[14] F.E. Satterthwaite, An approximate distribution of estimates of variance components, Biometrics Bulletin 2 (1946), 110-114.