Inference on the location parameter of exponential populations
Discussiones Mathematicae. Probability and Statistics, Tome 29 (2009) no. 2, pp. 115-129.

Voir la notice de l'article provenant de la source Library of Science

Studentization and analysis of variance are simple in Gaussian families because X̅ and S² are independent random variables. We exploit the independence of the spacings in exponential populations with location λ and scale δ to develop simple ways of dealing with inference on the location parameter, namely by developing an analysis of scale in the homocedastic independent k-sample problem.
Keywords: studentization, analysis of scale, characterizations, independence of exponential spacings, location-scale families, F-ratio
@article{DMPS_2009_29_2_a1,
     author = {de F\'atima Brilhante, Maria and Mendon\c{c}a, Sandra and Pestana, Dinis and Rocha, Maria},
     title = {Inference on the location parameter of exponential populations},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {115--129},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2009},
     zbl = {1208.62027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a1/}
}
TY  - JOUR
AU  - de Fátima Brilhante, Maria
AU  - Mendonça, Sandra
AU  - Pestana, Dinis
AU  - Rocha, Maria
TI  - Inference on the location parameter of exponential populations
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2009
SP  - 115
EP  - 129
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a1/
LA  - en
ID  - DMPS_2009_29_2_a1
ER  - 
%0 Journal Article
%A de Fátima Brilhante, Maria
%A Mendonça, Sandra
%A Pestana, Dinis
%A Rocha, Maria
%T Inference on the location parameter of exponential populations
%J Discussiones Mathematicae. Probability and Statistics
%D 2009
%P 115-129
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a1/
%G en
%F DMPS_2009_29_2_a1
de Fátima Brilhante, Maria; Mendonça, Sandra; Pestana, Dinis; Rocha, Maria. Inference on the location parameter of exponential populations. Discussiones Mathematicae. Probability and Statistics, Tome 29 (2009) no. 2, pp. 115-129. http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a1/

[1] A.A. Aspin, An examination and further developments of a formula arising in the problem of comparing two mean values, Biometrika 35 (1948), 88-97.

[2] A.A. Aspin, Tables for use in comparisons whose accuracy involves two variances, separately estimated, Biometrika 36 (1949), 290-293.

[3] M.F. Brilhante and S. Kotz, Infinite divisibility of the spacings of a Kotz-Kozubowski-Podgórski generalized Laplace model, Statistics Probability Letters 78 (2008), 2433-2436.

[4] M.F. Brilhante, D. Pestana, J. Rocha and S. Velosa, Inferência Estatística Sobre Localização e Escala, Sociedade Portuguesa de Estatística, Ponta Delgada 2001.

[5] H.A. David and H.N. Nagaraja, Order Statistics, 3rd ed., Wiley, New York 2003.

[6] R.A. Fisher, Statistical Methods for Research Workers, Oliver and Boyd, Edinburgh 1925.

[7] N.L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, vol. 2, 2nd ed., Wiley, New York 1995.

[8] G.W. Oehlert, A First Course in Design and Analysis of Experiments, Freeman, New York 2000.

[9] V. Perlo, On the distribution of `Student's' ratio for samples of three drawn from the rectangular distribution, Biometrika 25 (1933), 203-204.

[10] D. Pestana, F. Brilhante and J. Rocha, The analysis of variance revisited, in Extreme Values and Additive Laws, Lisboa (1999), 73-77.

[11] D. Pestana and J. Rocha, Análise de escala - modelo exponencial, in A Estatística e o Futuro e o Futuro da Estatística, Salamandra, Lisboa (1993), 295-303.

[12] J. Rocha, Localização e Escala em Situações não Clássicas, Dissertação de Doutoramento, Universidade dos Açores, Ponta Delgada 1995.

[13] J. Rocha, Inference on location parameters - internally studentized statistics, Rev. Estat. (2001), 355-356.

[14] F.E. Satterthwaite, An approximate distribution of estimates of variance components, Biometrics Bulletin 2 (1946), 110-114.

[15] H. Scheffé, On solutions of the Behrens-Fisher problem based on the t-distribution, Ann. Math. Stat. 14 (1943), 35-44.

[16] H. Scheffé, A note on the Behrens-Fisher problem, Ann. Math. Stat. 15 (1944), 430-432.

[17] H. Smith, The problem of comparing the results of two experiments with unequal means, J. Council Sci. Industr. Res. 9 (1936), 211-212.

[18] Student, The probable error of the mean, (Reprinted in E.S. Pearson and J. Wishart, (1958) 'Student's' Collected Papers, Cambridge Univ. Press, Cambridge), Biometrika 6 (1908), 1-25.

[19] B.L. Welch, The significance of the difference between two means when the population variances are unequal, Biometrika 29 (1938), 350-361.

[20] B.L. Welch, On the comparison of several mean values: an alternative approach, Biometrika 38 (1951), 330-336.