Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2009_29_2_a1, author = {de F\'atima Brilhante, Maria and Mendon\c{c}a, Sandra and Pestana, Dinis and Rocha, Maria}, title = {Inference on the location parameter of exponential populations}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {115--129}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2009}, zbl = {1208.62027}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a1/} }
TY - JOUR AU - de Fátima Brilhante, Maria AU - Mendonça, Sandra AU - Pestana, Dinis AU - Rocha, Maria TI - Inference on the location parameter of exponential populations JO - Discussiones Mathematicae. Probability and Statistics PY - 2009 SP - 115 EP - 129 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a1/ LA - en ID - DMPS_2009_29_2_a1 ER -
%0 Journal Article %A de Fátima Brilhante, Maria %A Mendonça, Sandra %A Pestana, Dinis %A Rocha, Maria %T Inference on the location parameter of exponential populations %J Discussiones Mathematicae. Probability and Statistics %D 2009 %P 115-129 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a1/ %G en %F DMPS_2009_29_2_a1
de Fátima Brilhante, Maria; Mendonça, Sandra; Pestana, Dinis; Rocha, Maria. Inference on the location parameter of exponential populations. Discussiones Mathematicae. Probability and Statistics, Tome 29 (2009) no. 2, pp. 115-129. http://geodesic.mathdoc.fr/item/DMPS_2009_29_2_a1/
[1] A.A. Aspin, An examination and further developments of a formula arising in the problem of comparing two mean values, Biometrika 35 (1948), 88-97.
[2] A.A. Aspin, Tables for use in comparisons whose accuracy involves two variances, separately estimated, Biometrika 36 (1949), 290-293.
[3] M.F. Brilhante and S. Kotz, Infinite divisibility of the spacings of a Kotz-Kozubowski-Podgórski generalized Laplace model, Statistics Probability Letters 78 (2008), 2433-2436.
[4] M.F. Brilhante, D. Pestana, J. Rocha and S. Velosa, Inferência Estatística Sobre Localização e Escala, Sociedade Portuguesa de Estatística, Ponta Delgada 2001.
[5] H.A. David and H.N. Nagaraja, Order Statistics, 3rd ed., Wiley, New York 2003.
[6] R.A. Fisher, Statistical Methods for Research Workers, Oliver and Boyd, Edinburgh 1925.
[7] N.L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, vol. 2, 2nd ed., Wiley, New York 1995.
[8] G.W. Oehlert, A First Course in Design and Analysis of Experiments, Freeman, New York 2000.
[9] V. Perlo, On the distribution of `Student's' ratio for samples of three drawn from the rectangular distribution, Biometrika 25 (1933), 203-204.
[10] D. Pestana, F. Brilhante and J. Rocha, The analysis of variance revisited, in Extreme Values and Additive Laws, Lisboa (1999), 73-77.
[11] D. Pestana and J. Rocha, Análise de escala - modelo exponencial, in A Estatística e o Futuro e o Futuro da Estatística, Salamandra, Lisboa (1993), 295-303.
[12] J. Rocha, Localização e Escala em Situações não Clássicas, Dissertação de Doutoramento, Universidade dos Açores, Ponta Delgada 1995.
[13] J. Rocha, Inference on location parameters - internally studentized statistics, Rev. Estat. (2001), 355-356.
[14] F.E. Satterthwaite, An approximate distribution of estimates of variance components, Biometrics Bulletin 2 (1946), 110-114.
[15] H. Scheffé, On solutions of the Behrens-Fisher problem based on the t-distribution, Ann. Math. Stat. 14 (1943), 35-44.
[16] H. Scheffé, A note on the Behrens-Fisher problem, Ann. Math. Stat. 15 (1944), 430-432.
[17] H. Smith, The problem of comparing the results of two experiments with unequal means, J. Council Sci. Industr. Res. 9 (1936), 211-212.
[18] Student, The probable error of the mean, (Reprinted in E.S. Pearson and J. Wishart, (1958) 'Student's' Collected Papers, Cambridge Univ. Press, Cambridge), Biometrika 6 (1908), 1-25.
[19] B.L. Welch, The significance of the difference between two means when the population variances are unequal, Biometrika 29 (1938), 350-361.
[20] B.L. Welch, On the comparison of several mean values: an alternative approach, Biometrika 38 (1951), 330-336.