Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2008_28_2_a1, author = {Mohan, Ratnakaram and Kageyama, Sanpei and Lee, Moon and Yang, G.}, title = {Certain new {M-matrices} and their properties with applications}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {183--207}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2008}, zbl = {1208.62118}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2008_28_2_a1/} }
TY - JOUR AU - Mohan, Ratnakaram AU - Kageyama, Sanpei AU - Lee, Moon AU - Yang, G. TI - Certain new M-matrices and their properties with applications JO - Discussiones Mathematicae. Probability and Statistics PY - 2008 SP - 183 EP - 207 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2008_28_2_a1/ LA - en ID - DMPS_2008_28_2_a1 ER -
%0 Journal Article %A Mohan, Ratnakaram %A Kageyama, Sanpei %A Lee, Moon %A Yang, G. %T Certain new M-matrices and their properties with applications %J Discussiones Mathematicae. Probability and Statistics %D 2008 %P 183-207 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2008_28_2_a1/ %G en %F DMPS_2008_28_2_a1
Mohan, Ratnakaram; Kageyama, Sanpei; Lee, Moon; Yang, G. Certain new M-matrices and their properties with applications. Discussiones Mathematicae. Probability and Statistics, Tome 28 (2008) no. 2, pp. 183-207. http://geodesic.mathdoc.fr/item/DMPS_2008_28_2_a1/
[1] B.E. Aupperle and J.F. Meyer, Fault-tolerant BIBD networks, Proc. Inter. Symp. (FTCS) 18, IEEE, (1988), 306-311.
[2] L.N. Bhuyan and D.P. Agarwal, Design and performance of a general class of interconnection networks, IEEE Trans. Computers C-30 (1981), 587-590.
[3] R.C. Bose, Strongly regular graphs, partial geometries and partially balanced designs, Pacific J. Math. 13 (1963), 389-419.
[4] R.C. Bose and K.R. Nair, Partially balanced incomplete block designs, Sankhyā 4 (1939), 337-372.
[5] Y. Chang, Y. Hua, X.G. Xia and B. Sudler, An insight into space-time block codes using Hurwitz-Random families of matrices, (personal communication) 2005.
[6] J.H.E. Cohn, Determinants with elements ± 1, J. London Math. Soc. 14 (1963), 581-588.
[7] C. Colbourn, Applications of combinatorial designs in communications and networking, MSRI Project 2000.
[8] C. Colbourn, J.H. Dinitz and D.R. Stinson, Applications of combinatorial designs in communications, cryptography and networking, Surveys in Combinatorics, 1993, Walker (Ed.), London Mathematical Society Lecture Note Series 187, Cambridge University Press 1993.
[9] H. Ehlich, Determinantenabschätzungen für binäre matrizen, Math. Z. 83 (1964), 123-132.
[10] H. Ehlich and K. Zeller, Binäre matrizen, Z. Angew. Math. Mech. 42 (1962), 20-21.
[11] P. Fan and M. Darnell, Sequence Design for Communications Applications, Research Studies Press Ltd., Wiley, New York 1996.
[12] A.V. Geramita and J. Seberry, Orthogonal Designs, Quadratic Forms and Hadamard Matrices, Marcel and Dekker, New York 1979.
[13] J.M. Goethals and J.J. Seidel, Strongly regular graphs derived from combinatorial designs, Can. J. Math. 22 (1970), 597-614.
[14] L.W. Hawkes, A regular fault-tolerant architecture for interconnection networks, IEEE Trans. Computers C-34 (1985), 677-680.
[15] H. Jafarkhani, A quasi-orthogonal space-time block code, Preprint 2001.
[16] S. Kageyama and R.N. Mohan, On μ-resolvable BIB designs, Discrete Math. 45 (1983), 113-121.
[17] S. Kageyama and R.N. Mohan, On the construction of group divisible partially balanced incomplete block designs, Bull. Fac. Sch. Edu., Hrioshima Univ. 7 (1984), 57-60.
[18] J. Kahn, J. Komlos and E. Szemeredi, On the probability that a random ± 1 matrix is singular, J. Amer. Math. Soc. 8 (1995), 223-240.
[19] C.-W. Liu, A method of constructing certain symmetric partially balanced designs, Scientia Sinica 12 (1963), 1935-1936.
[20] R.N. Mohan, A new series of μ-resolvable (d+1)-associate class GDPBIB designs, Indian J. Pure Appl. Math. 30 (1999), 89-98.
[21] R.N. Mohan, Some classes of Mₙ-matrices and Mₙ-graphs and applications, JCISS 26 (2001), 51-78.
[22] R.N. Mohan and P.T. Kulkarni, A new family of fault-tolerant M-networks, IEEE Trans. Comupters (under revision) (2006).
[23] N.C. Nguyen, N.M.D. Vo and S.Y. Lee, Fault tolerant routing and broadcasting in deBruijn networks, Advanced Information Networking and Applications, AINA 2005, 19th International Conference, March 2005, 2 (2005), 35-40.
[24] D. Raghavarao, A generalization of group divisible designs, Ann. Math. Statist. 31 (1960), 756-771.
[25] D. Raghavarao, Constructions and Combinatorial Problems in Design of Experiments, Wiley, New York 1971.
[26] C. Ramanujacharyulu, Non-linear spaces in the construction of symmetric PBIB designs, Sankhyā A27 (1965), 409-414.
[27] J. Seberry and M. Yamada, Hadamard Matrices, Sequences and Block Designs, Contemporary Design Theory: A Collection of Surveys (edited by J.H. Dinitz and D.R. Stinson), Wiley, New York 1992, 431-560.
[28] N. Seifer, Upper bounds for permanent of (1,-1)-matrices, Isreal J. Math. 48 (1984), 69-78.
[29] S.S. Shrikhande, Cyclic solutions of symmetric group divisible designs, Calcutta Statist. Assoc. Bull. 5 (1953), 36-39.
[30] D.B. Skillicorn, A new class of fault-tolerant static interconnection networks, IEEE Trans. Comupters 37 (1988), 1468-1470.
[31] D.A. Sprott, A series of symmetric group divisible designs, Ann. Math. Statist. 30 (1959), 249-251.
[32] M.R. Teague, Image analysis via the general theory of moments, J. Optical Soc. America 70 (1979), 920-930.
[33] B. Vasic and O. Milenkovic, Combinatorial constructions of low-density parity-check codes for iterative decoding, IEEE Trans. on Information Theory 50 (2004), 1156-1176.
[34] E.T. Wang, On permanents of (1,-1)-matrices, Isreal J. Math. 18 (1974), 353-361.