Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2008_28_1_a4, author = {Baksalary, Oskar and Trenkler, G\"otz}, title = {An alternative approach to characterize the commutativity of orthogonal projectors}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {113--137}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2008}, zbl = {1155.15017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2008_28_1_a4/} }
TY - JOUR AU - Baksalary, Oskar AU - Trenkler, Götz TI - An alternative approach to characterize the commutativity of orthogonal projectors JO - Discussiones Mathematicae. Probability and Statistics PY - 2008 SP - 113 EP - 137 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2008_28_1_a4/ LA - en ID - DMPS_2008_28_1_a4 ER -
%0 Journal Article %A Baksalary, Oskar %A Trenkler, Götz %T An alternative approach to characterize the commutativity of orthogonal projectors %J Discussiones Mathematicae. Probability and Statistics %D 2008 %P 113-137 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2008_28_1_a4/ %G en %F DMPS_2008_28_1_a4
Baksalary, Oskar; Trenkler, Götz. An alternative approach to characterize the commutativity of orthogonal projectors. Discussiones Mathematicae. Probability and Statistics, Tome 28 (2008) no. 1, pp. 113-137. http://geodesic.mathdoc.fr/item/DMPS_2008_28_1_a4/
[1] W.N. Anderson Jr., E.J. Harner and G.E. Trapp, Eigenvalues of the difference and product of projections, Linear and Multilinear Algebra 17 (1985), 295-299.
[2] J.K. Baksalary, Algebraic characterizations and statistical implications of the commutativity of orthogonal projectors, pp. 113-142 in: Proceedings of the Second International Tampere Conference in Statistics, T. Pukkila, S. Puntanen (Eds.), University of Tampere, Tampere, Finland 1987.
[3] J.K. Baksalary, O.M. Baksalary and T. Szulc, A property of orthogonal projectors, Linear Algebra Appl. 354 (2002), 35-39.
[4] A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications (2nd ed.), Springer-Verlag, New York 2003.
[5] R.E Hartwig and K. Spindelböck, Matrices for which A* and $A^†$ commute, Linear and Multilinear Algebra 14 (1984), 241-256.
[6] G. Marsaglia and G.P.H. Styan, Equalities and inequalities for ranks of matrices, Linear and Multilinear Algebra 2 (1974), 269-292.
[7] R. Piziak, P.L. Odell and R. Hahn, Constructing projections on sums and intersections, Comput. Math. Appl. 37 (1999), 67-74.
[8] Y. Tian and G.P.H. Styan, Rank equalities for idempotent and involutory matrices, Linear Algebra Appl. 335 (2001), 101-117.