Geometrically strictly semistable laws as the limit laws
Discussiones Mathematicae. Probability and Statistics, Tome 27 (2007) no. 1-2, pp. 79-97.

Voir la notice de l'article provenant de la source Library of Science

A random variable X is geometrically infinitely divisible iff for every p ∈ (0,1) there exists random variable X_p such that Xd= ∑_k=1^T(p)X_p,k, where X_p,k's are i.i.d. copies of X_p, and random variable T(p) independent of X_p,1,X_p,2,... has geometric distribution with the parameter p. In the paper we give some new characterization of geometrically infinitely divisible distribution. The main results concern geometrically strictly semistable distributions which form a subset of geometrically infinitely divisible distributions. We show that they are limit laws for random and deterministic sums of independent random variables.
Keywords: infinite divisibility, geometric infinite divisibility, geometric semistability, random sums, limit laws, characteristic function
@article{DMPS_2007_27_1-2_a4,
     author = {Malinowski, Marek},
     title = {Geometrically strictly semistable laws as the limit laws},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {79--97},
     publisher = {mathdoc},
     volume = {27},
     number = {1-2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2007_27_1-2_a4/}
}
TY  - JOUR
AU  - Malinowski, Marek
TI  - Geometrically strictly semistable laws as the limit laws
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2007
SP  - 79
EP  - 97
VL  - 27
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2007_27_1-2_a4/
LA  - en
ID  - DMPS_2007_27_1-2_a4
ER  - 
%0 Journal Article
%A Malinowski, Marek
%T Geometrically strictly semistable laws as the limit laws
%J Discussiones Mathematicae. Probability and Statistics
%D 2007
%P 79-97
%V 27
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2007_27_1-2_a4/
%G en
%F DMPS_2007_27_1-2_a4
Malinowski, Marek. Geometrically strictly semistable laws as the limit laws. Discussiones Mathematicae. Probability and Statistics, Tome 27 (2007) no. 1-2, pp. 79-97. http://geodesic.mathdoc.fr/item/DMPS_2007_27_1-2_a4/

[1] I. Gertsbach, A survey of methods used in engineering reliability, Proceedings 'Reliability and Decision Making', Universita di Siena 1990.

[2] L.B. Klebanov, G.M. Maniya and I.A. Melamed, A problem of V.M. Zolotarev and analogues of infinitely divisible and stable distributions in a scheme for summation of a random number of random variables, Theory Probab. Appl. 29 (1984), 791-794.

[3] P. Lévy, Théorie de l'addition des variables aléatoires, Gauthier-Villars, Paris 1937.

[4] G.D. Lin, Characterizations of the Laplace and related distributions via geometric compound, Sankhya Ser. A 56 (1994), 1-9.

[5] M. Loève, Nouvelles classes de lois limites, Bull. Soc. Math. France 73 (1945), 107-126.

[6] M. Maejima, Semistable distributions, in: Lévy Processes, Birkhäuser, Boston 2001, 169-183.

[7] M. Maejima and G. Samorodnitsky, Certain probabilistic aspects of semistable laws, Ann. Inst. Statist. Math. 51 (1999), 449-462.

[8] N.R. Mohan, R. Vasudeva and H.V. Hebbar, On geometrically infinitely divisible laws and geometric domains of attraction, Sankhya Ser. A 55 (1993), 171-179.

[9] S.T. Rachev and G. Samorodnitsky, Geometric stable distributions in Banach spaces, J. Theoret. Probab. 2 (1994), 351-373.

[10] K. Sato, Lévy processes and infinitely divisible distributions, Cambridge Univ. Press, Cambridge 1999.