Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2006_26_2_a3, author = {St\k{e}pniak, Czes{\l}aw}, title = {Inverting covariance matrices}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {163--177}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2006}, zbl = {1132.15006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2006_26_2_a3/} }
Stępniak, Czesław. Inverting covariance matrices. Discussiones Mathematicae. Probability and Statistics, Tome 26 (2006) no. 2, pp. 163-177. http://geodesic.mathdoc.fr/item/DMPS_2006_26_2_a3/
[1] G.H. Golub and C.F. Van Loan, Matrix Computation, Sec. Edition, J. Hopkins Univ. Press, Baltimore 1989.
[2] F.A. Graybill, Matrices with Application in Statistics, Sec. Edition, Wadsworth, Belmont, CA 1983.
[3] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge 1985.
[4] J. Jiang, Dispersion matrix in balanced mixed ANOVA models, Linear Algebra Appl. 382 (2004), 211-219.
[5] J. Kleffe and B. Seifert, Computation of variance components by MINQUE method, J. Multivariate Anal. 18 (1986), 107-116.
[6] L.R. LaMotte, Notes on the covariance matrix of a random nested ANOVA model, Ann. Math. Statist. 43 (1972), 659-662.
[7] C.R. Rao, Linear Statistical Inference and Its Applications, Sec. Edition, J. Wiley, New York 1973.
[8] S.R. Searle, G. Casella and C. McCulloch, Variance Components, J. Wiley, New York 1992.
[9] J. Seely, Quadratic subspaces and completeness, Ann. Math. Statist. 42 (1971), 710-721.
[10] C. Stępniak, A note on estimation of parameters in linear models, Bull. Acad. Polon. Sc. Math., Astr. et Phys. 22 (1974), 1151-1154.
[11] C. Stępniak, Optimal allocation of units in experimental designs with hierarchical and cross classification, Ann. Inst. Statist. Math. A 35 (1983), 461-473.
[12] C. Stępniak, Inversion of covariance matrices: explicit formulae, SIAM J. Matrix Anal. Appl. 12 (1991), 577-580.
[13] C. Stępniak and M. Niezgoda, Inverting covariance matrices in unbalanced hierarchical models, J. Statist. Comput. Simul. 51 (1995), 215-221.
[14] D.M. VanLeeuwen, D.S. Birkes and J.F. Seely, Balance and orthogonality in designs for mixed classification models, Ann. Statist. 2 (1999), 1927-1947.
[15] R. Zmyślony and H. Drygas, Jordan algebras and Bayesian quadratic estimation of variance components, Linear Algebra Appl. 168 (1992), 259-275.