Inverting covariance matrices
Discussiones Mathematicae. Probability and Statistics, Tome 26 (2006) no. 2, pp. 163-177.

Voir la notice de l'article provenant de la source Library of Science

Some useful tools in modelling linear experiments with general multi-way classification of the random effects and some convenient forms of the covariance matrix and its inverse are presented. Moreover, the Sherman-Morrison-Woodbury formula is applied for inverting the covariance matrix in such experiments.
Keywords: multi-way classification, cross, hierarchical, balanced, unbalanced, covariance matrix, inverting
@article{DMPS_2006_26_2_a3,
     author = {St\k{e}pniak, Czes{\l}aw},
     title = {Inverting covariance matrices},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {163--177},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2006},
     zbl = {1132.15006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2006_26_2_a3/}
}
TY  - JOUR
AU  - Stępniak, Czesław
TI  - Inverting covariance matrices
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2006
SP  - 163
EP  - 177
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2006_26_2_a3/
LA  - en
ID  - DMPS_2006_26_2_a3
ER  - 
%0 Journal Article
%A Stępniak, Czesław
%T Inverting covariance matrices
%J Discussiones Mathematicae. Probability and Statistics
%D 2006
%P 163-177
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2006_26_2_a3/
%G en
%F DMPS_2006_26_2_a3
Stępniak, Czesław. Inverting covariance matrices. Discussiones Mathematicae. Probability and Statistics, Tome 26 (2006) no. 2, pp. 163-177. http://geodesic.mathdoc.fr/item/DMPS_2006_26_2_a3/

[1] G.H. Golub and C.F. Van Loan, Matrix Computation, Sec. Edition, J. Hopkins Univ. Press, Baltimore 1989.

[2] F.A. Graybill, Matrices with Application in Statistics, Sec. Edition, Wadsworth, Belmont, CA 1983.

[3] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge 1985.

[4] J. Jiang, Dispersion matrix in balanced mixed ANOVA models, Linear Algebra Appl. 382 (2004), 211-219.

[5] J. Kleffe and B. Seifert, Computation of variance components by MINQUE method, J. Multivariate Anal. 18 (1986), 107-116.

[6] L.R. LaMotte, Notes on the covariance matrix of a random nested ANOVA model, Ann. Math. Statist. 43 (1972), 659-662.

[7] C.R. Rao, Linear Statistical Inference and Its Applications, Sec. Edition, J. Wiley, New York 1973.

[8] S.R. Searle, G. Casella and C. McCulloch, Variance Components, J. Wiley, New York 1992.

[9] J. Seely, Quadratic subspaces and completeness, Ann. Math. Statist. 42 (1971), 710-721.

[10] C. Stępniak, A note on estimation of parameters in linear models, Bull. Acad. Polon. Sc. Math., Astr. et Phys. 22 (1974), 1151-1154.

[11] C. Stępniak, Optimal allocation of units in experimental designs with hierarchical and cross classification, Ann. Inst. Statist. Math. A 35 (1983), 461-473.

[12] C. Stępniak, Inversion of covariance matrices: explicit formulae, SIAM J. Matrix Anal. Appl. 12 (1991), 577-580.

[13] C. Stępniak and M. Niezgoda, Inverting covariance matrices in unbalanced hierarchical models, J. Statist. Comput. Simul. 51 (1995), 215-221.

[14] D.M. VanLeeuwen, D.S. Birkes and J.F. Seely, Balance and orthogonality in designs for mixed classification models, Ann. Statist. 2 (1999), 1927-1947.

[15] R. Zmyślony and H. Drygas, Jordan algebras and Bayesian quadratic estimation of variance components, Linear Algebra Appl. 168 (1992), 259-275.