Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2006_26_1_a3, author = {G\'oralczyk, Anna and Motyl, Jerzy}, title = {Set-valued {Stratonovich} integral}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {63--81}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2006}, zbl = {1129.93045}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2006_26_1_a3/} }
Góralczyk, Anna; Motyl, Jerzy. Set-valued Stratonovich integral. Discussiones Mathematicae. Probability and Statistics, Tome 26 (2006) no. 1, pp. 63-81. http://geodesic.mathdoc.fr/item/DMPS_2006_26_1_a3/
[1] J.P. Aubin, Dynamic Economic Theory, A viability Approach, Springer, Verlag, Berlin 1997.
[2] J.P. Aubin and A. Cellina, Differential Inclusions, Noordhoff, Leyden 1984.
[3] J.P. Aubin and H. Frankowska, Set-valued analysis, Birkhäuser Boston-Basel-Berlin 1990.
[4] H.T. Banks and M.Q. Jacobs, A diffenertial calculus for set-valued function, J. Math. Anal. Appl. 29 (1970), 246-272.
[5] F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivar. Anal. 7 (1977), 149-182.
[6] M. Hukuhara, Intégration des applications measurables dont a valeur est un compact convexe, Funkcialaj Ekvacioj 10 (1967), 205-223.
[7] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Acad. Publ.-PWN, Dordrecht-Boston-London Warszawa 1991.
[8] M. Kisielewicz, Set-valued stochastic integrals and stochastic inclusions, Stoch. Anal. Appl. 15 (5) (1997), 783-800.
[9] M. Kisielewicz, M. Michta and J. Motyl, Set-valued approach to stochastic control. Existence and regularity properties, Dynamic Syst. Appl. 12 (3-4) (2003), 405-432.
[10] M. Kisielewicz, M. Michta and J. Motyl, Set-valued approach to stochastic control. Viability and semimartingale issues, Dynamic Syst. Appl. 12 (3-4) (2003), 433-466.
[11] V. Lakshmikhantam, T. Gnana Bhaskar and D. Vasundhara, Theory of Set Differential Equations in Metric Space, (preprint) (2004).
[12] P. Protter, Stochastic Integration and Differential Equations: A New Approach, Springer, New York 1990.
[13] J. San Martin, One-dimensional Stratonovich differential equations, Ann. Probab. 21 (1) (1993), 509-553.
[14] E. Wong and M. Zakai, On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Statist. 36 (1965), 1560-1564.