Set-valued Stratonovich integral
Discussiones Mathematicae. Probability and Statistics, Tome 26 (2006) no. 1, pp. 63-81.

Voir la notice de l'article provenant de la source Library of Science

The purpose of the paper is to introduce a set-valued Stratonovich integral driven by a one-dimensional Brownian motion. We discuss the existence of this integral and investigate its properties.
Keywords: set-valued function, Hukuhara differential, selection of a set-valued map, semimartingale, Stratonovich integral
@article{DMPS_2006_26_1_a3,
     author = {G\'oralczyk, Anna and Motyl, Jerzy},
     title = {Set-valued {Stratonovich} integral},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {63--81},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2006},
     zbl = {1129.93045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2006_26_1_a3/}
}
TY  - JOUR
AU  - Góralczyk, Anna
AU  - Motyl, Jerzy
TI  - Set-valued Stratonovich integral
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2006
SP  - 63
EP  - 81
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2006_26_1_a3/
LA  - en
ID  - DMPS_2006_26_1_a3
ER  - 
%0 Journal Article
%A Góralczyk, Anna
%A Motyl, Jerzy
%T Set-valued Stratonovich integral
%J Discussiones Mathematicae. Probability and Statistics
%D 2006
%P 63-81
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2006_26_1_a3/
%G en
%F DMPS_2006_26_1_a3
Góralczyk, Anna; Motyl, Jerzy. Set-valued Stratonovich integral. Discussiones Mathematicae. Probability and Statistics, Tome 26 (2006) no. 1, pp. 63-81. http://geodesic.mathdoc.fr/item/DMPS_2006_26_1_a3/

[1] J.P. Aubin, Dynamic Economic Theory, A viability Approach, Springer, Verlag, Berlin 1997.

[2] J.P. Aubin and A. Cellina, Differential Inclusions, Noordhoff, Leyden 1984.

[3] J.P. Aubin and H. Frankowska, Set-valued analysis, Birkhäuser Boston-Basel-Berlin 1990.

[4] H.T. Banks and M.Q. Jacobs, A diffenertial calculus for set-valued function, J. Math. Anal. Appl. 29 (1970), 246-272.

[5] F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivar. Anal. 7 (1977), 149-182.

[6] M. Hukuhara, Intégration des applications measurables dont a valeur est un compact convexe, Funkcialaj Ekvacioj 10 (1967), 205-223.

[7] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Acad. Publ.-PWN, Dordrecht-Boston-London Warszawa 1991.

[8] M. Kisielewicz, Set-valued stochastic integrals and stochastic inclusions, Stoch. Anal. Appl. 15 (5) (1997), 783-800.

[9] M. Kisielewicz, M. Michta and J. Motyl, Set-valued approach to stochastic control. Existence and regularity properties, Dynamic Syst. Appl. 12 (3-4) (2003), 405-432.

[10] M. Kisielewicz, M. Michta and J. Motyl, Set-valued approach to stochastic control. Viability and semimartingale issues, Dynamic Syst. Appl. 12 (3-4) (2003), 433-466.

[11] V. Lakshmikhantam, T. Gnana Bhaskar and D. Vasundhara, Theory of Set Differential Equations in Metric Space, (preprint) (2004).

[12] P. Protter, Stochastic Integration and Differential Equations: A New Approach, Springer, New York 1990.

[13] J. San Martin, One-dimensional Stratonovich differential equations, Ann. Probab. 21 (1) (1993), 509-553.

[14] E. Wong and M. Zakai, On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Statist. 36 (1965), 1560-1564.