Optimal trend estimation in geometric asset price models
Discussiones Mathematicae. Probability and Statistics, Tome 25 (2005) no. 1, pp. 51-70.

Voir la notice de l'article provenant de la source Library of Science

In the general geometric asset price model, the asset price P(t) at time t satisfies the relation
Keywords: geometric asset price model, trend estimation, Wiener process, Ornstein-Uhlenbeck process, kernel reproducing Hilbert space, exogeneous shocks, compound Poisson process
@article{DMPS_2005_25_1_a2,
     author = {Weba, Michael},
     title = {Optimal trend estimation in geometric asset price models},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {51--70},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2005},
     zbl = {1102.62115},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2005_25_1_a2/}
}
TY  - JOUR
AU  - Weba, Michael
TI  - Optimal trend estimation in geometric asset price models
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2005
SP  - 51
EP  - 70
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2005_25_1_a2/
LA  - en
ID  - DMPS_2005_25_1_a2
ER  - 
%0 Journal Article
%A Weba, Michael
%T Optimal trend estimation in geometric asset price models
%J Discussiones Mathematicae. Probability and Statistics
%D 2005
%P 51-70
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2005_25_1_a2/
%G en
%F DMPS_2005_25_1_a2
Weba, Michael. Optimal trend estimation in geometric asset price models. Discussiones Mathematicae. Probability and Statistics, Tome 25 (2005) no. 1, pp. 51-70. http://geodesic.mathdoc.fr/item/DMPS_2005_25_1_a2/

[1] M. Atteia, Hilbertian Kernels and Spline Functions, North-Holland, Amsterdam 1992.

[2] S. Cambanis, Sampling Designs for Time Series, Time Series in the Time Domain, Handbook of Statistics 5 (1985), (Eds. E.J. Hannan, P.R. Krishnaiah, and M.M. Rao), North-Holland, Amsterdam, 337-362.

[3] J.Y. Campbell, A.W. Lo and A.C. MacKinlay, The Econometrics of Financial Markets, Princeton University Press, Princeton 1997.

[4] E. Eberlein and U. Keller, Hyperbolic Distributions in Finance, Bernoulli 1 (1995), 281-299.

[5] I. Karatzas and S.E. Shreve, Methods of Mathematical Finance, Springer, New York 1998.

[6] M. Loève, Probability Theory II, (4th Edition), Springer, New York 1978.

[7] R. Merton, On Estimating the Expected Return on the Market: An Exploratory Investigation, Journal of Financial Economics 8 (1980), 323-361.

[8] E. Parzen, Regression Analysis of Continuous Parameter Time Series, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability 1 (1961), (Ed. J. Neyman), University of California Press, 469-489.

[9] J. Sacks and D. Ylvisaker, Designs for Regression Problems with Correlated Errors, The Annals of Mathematical Statistics 37 (1966), 66-89.

[10] J. Sacks and D. Ylvisaker, Designs for Regression Problems with Correlated Errors: Many Parameters, The Annals of Mathematical Statistics 39 (1968), 46-69.

[11] J. Sacks and D. Ylvisaker, Designs for Regression Problems with Correlated Errors III, The Annals of Mathematical Statistics 41 (1970), 2057-2074.

[12] R.J. Serfling, Approximation Theorems of Mathematical Statistics, Wiley 2002.

[13] Y. Su and S. Cambanis, Sampling Designs for Estimation of a Random Process, Stochastic Processes and Their Applications 46 (1993), 47-89.