Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2004_24_2_a5, author = {Qian, G. and Huggins, R. and Loesch, D.}, title = {Application of the {Rasch} model in categorical pedigree analysis using {MCEM:} {I} binary data}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {255--280}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2004}, zbl = {1165.62352}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2004_24_2_a5/} }
TY - JOUR AU - Qian, G. AU - Huggins, R. AU - Loesch, D. TI - Application of the Rasch model in categorical pedigree analysis using MCEM: I binary data JO - Discussiones Mathematicae. Probability and Statistics PY - 2004 SP - 255 EP - 280 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2004_24_2_a5/ LA - en ID - DMPS_2004_24_2_a5 ER -
%0 Journal Article %A Qian, G. %A Huggins, R. %A Loesch, D. %T Application of the Rasch model in categorical pedigree analysis using MCEM: I binary data %J Discussiones Mathematicae. Probability and Statistics %D 2004 %P 255-280 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2004_24_2_a5/ %G en %F DMPS_2004_24_2_a5
Qian, G.; Huggins, R.; Loesch, D. Application of the Rasch model in categorical pedigree analysis using MCEM: I binary data. Discussiones Mathematicae. Probability and Statistics, Tome 24 (2004) no. 2, pp. 255-280. http://geodesic.mathdoc.fr/item/DMPS_2004_24_2_a5/
[1] J.H. Albert and S. Chib, Bayesian analysis of binary and polychotomous response data, Journal of the American Statistical Association, 88 (1993), 669-679.
[2] J. Albert and M. Ghosh, Item respose modelling, Generalized Linear Models A Bayesian Perspective Ed. Dey, D.K. Ghosh, S.K. Mallick, B.K. Marcel Dekker, New York (2000), 173-193.
[3] G.E. Bonney, Regressive logistic models for familial disease and other binary traits, Biometrics 42 (1986), 611-625.
[4] K.S. Chan and J. Ledholter, Monte Carlo EM estimation for time series models involving counts, J. Amer. Stat. Assoc. 90 (1995), 242-252.
[5] S. Chib, Bayesian methods for correlated binary data, Generalized Linear Models, A Bayesian Perspective, Ed. Dey, D.K., Ghosh, S.K., Mallick, B.K. Marcel Dekker, New York (2000), 113-131.
[6] S. Chib and E. Greenberg, Understanding the Metropolis-Hastings algorithm, American Statistician 49 (1995), 327-335.
[7] A.P. Dempster, N. Laird and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Royal Stat. Soc. B 39 (1977), 1-38.
[8] G.H. Fischer and I.W. Molenaar, Rasch Models, Foundations, Recent Developments, and Applications, Springer-Verlag, New York 1995.
[9] R.A. Fisher, The correlation between relatives on the supposition of Mendelian inheritance, Trans. of the Royal Society of Edinburgh 52 (1918), 399-433.
[10] P.E.B. FitzGerald and M.W. Knuiman, Interpretation of regressive logistic regression coefficients in analyses of familial data, Biometrics 54 (1998), 909-920.
[11] A. Gelman and D.B. Rubin, Inference from iterative simulation using multiple sequences, Statistical Science 7 (1992), 457-472.
[12] S.W. Guo and E.A. Thompson, Monte Carlo estimation of mixed models for large complex pedigrees, Biometrics 50 (1994), 417-432.
[13] J.L. Hopper, Variance components for statistical genetics: applications in medical research to characteristics related to human diseases and health, Statistical Methods in Medical Research 2 (1993), 199-223.
[14] J.L. Hopper and J.D. Mathews, Extensions to multivariate normal models for pedigree analysis, Ann. Hum. Genet. 46 (1982), 373-383.
[15] R.M. Huggins, On robust analysis of pedigree data, Aust J. Stat. 35 (1993), 43-57.
[16] K.L. Lange, J. Westlake and M.A. Spence, Extensions to pedigree analysis, III, Variance components by the scoring method, Ann. Hum. Genet. 39 (1976), 485-491.
[17] D.Z. Loesch, Q.M. Bui, J. Grigsby, E. Butler, J. Epstein, RM. Huggins and AK. Taylor, Effect of the fragile X status categories and the FMRP levels on executive functioning in fragile X males and females, Neuropsychology (2002) (in press).
[18] T.A. Louis, Finding observed information using the EM algorithm, J. Royal Stat. Soc. B 44 (1982), 226-233.
[19] X.L. Meng and D.B. Rubin, Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm, J. Amer. Stat. Assoc. 86 (1991), 899-909.
[20] G. Rasch, Probabilistic Models for some Intelligence and Attainment Tests, University of Chicago Press, Chicago 1980.
[21] D. Sinha, M.A. Tanner and W.J. Hall, Maximization of the marginal likelihood of grouped survival data, Biometrika 81 (1994), 53-60.
[22] S. Sommer and R.M. Huggins, Variable selection using the Wald test and a robust Cp, Applied Statistics 45 (1996), 15-29.
[23] M.A. Tanner, Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions, 3rd Ed., Springer, New York 1996.
[24] G.C.G. Wei and M.A. Tanner, A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithm, J. Amer. Stat. Assoc. 85 (1990), 699-704.