Optimum chemical balance weighing designs with diagonal variance-covariance matrix of errors
Discussiones Mathematicae. Probability and Statistics, Tome 24 (2004) no. 2, pp. 215-232.

Voir la notice de l'article provenant de la source Library of Science

In this paper we study the estimation problem of individual measurements (weights) of objects in a model of chemical balance weighing design with diagonal variance - covariance matrix of errors under the restriction k₁ + k₂ p, where k₁ and k₂ represent the number of objects placed on the right and left pans, respectively. We want all variances of estimated measurments to be equal and attaining their lower bound. We give a necessary and sufficient condition under which this lower bound is attained by the variance of each of the estimated measurements. To construct the design matrix X of the considered optimum chemical balance weighing design we use the incidence matrices of balanced bipartite weighing designs.
Keywords: balanced bipartite weighing design, chemical balanceweighing design
@article{DMPS_2004_24_2_a3,
     author = {Ceranka, Bronis{\l}aw and Graczyk, Ma{\l}gorzata},
     title = {Optimum chemical balance weighing designs with diagonal variance-covariance matrix of errors},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {215--232},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2004},
     zbl = {1165.62330},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2004_24_2_a3/}
}
TY  - JOUR
AU  - Ceranka, Bronisław
AU  - Graczyk, Małgorzata
TI  - Optimum chemical balance weighing designs with diagonal variance-covariance matrix of errors
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2004
SP  - 215
EP  - 232
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2004_24_2_a3/
LA  - en
ID  - DMPS_2004_24_2_a3
ER  - 
%0 Journal Article
%A Ceranka, Bronisław
%A Graczyk, Małgorzata
%T Optimum chemical balance weighing designs with diagonal variance-covariance matrix of errors
%J Discussiones Mathematicae. Probability and Statistics
%D 2004
%P 215-232
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2004_24_2_a3/
%G en
%F DMPS_2004_24_2_a3
Ceranka, Bronisław; Graczyk, Małgorzata. Optimum chemical balance weighing designs with diagonal variance-covariance matrix of errors. Discussiones Mathematicae. Probability and Statistics, Tome 24 (2004) no. 2, pp. 215-232. http://geodesic.mathdoc.fr/item/DMPS_2004_24_2_a3/

[1] K.S. Banerjee, Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics. Marcel Dekker Inc., New York 1975.

[2] B. Ceranka and M. Graczyk, Optimum chemical balance weighing designs under the restriction on weighings, Discussiones Mathematicae - Probability and Statistics 21 (2001), 111-120.

[3] B. Ceranka and K. Katulska, Chemical balance weighing designs under the restriction on the number of objects placed on the pans, Tatra Mt. Math. Publ. 17 (1999), 141-148.

[4] B. Ceranka, K. Katulska and D. Mizera, The application of ternary balanced block designs to chemical balance weighing designs, Discussiones Mathematicae - Algebra and Stochastic Methods 18 (1998), 179-185.

[5] H. Hotelling, Some improvements in weighing and other experimental techniques, Ann. Math. Stat. 15 (1944), 297-305.

[6] C. Huang, Balanced bipartite weighing designs, Journal of Combinatorial Theory (A) 21 (1976), 20-34.

[7] K. Katulska, Optimum chemical balance weighing designs with non - homegeneity of the variances of errors, J. Japan Statist. Soc. 19 (1989), 95-101.

[8] J.W. Linnik, Metoda Najmniejszych Kwadratów i Teoria Opracowywania Obserwacji, PWN, Warszawa 1962.

[9] D. Raghavarao, Constructions and Combinatorial Problems in Design ofExperiments, John Wiley Inc., New York 1971.

[10] C.R. Rao, Linear Statistical Inference and its Applications, Second Edition, John Wiley and Sons, Inc., New York 1973.

[11] M.N. Swamy, Use of balanced bipartite weighing designs as chemical balance designs, Comm. Statist. Theory Methods 11 (1982), 769-785.