Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2004_24_2_a3, author = {Ceranka, Bronis{\l}aw and Graczyk, Ma{\l}gorzata}, title = {Optimum chemical balance weighing designs with diagonal variance-covariance matrix of errors}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {215--232}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2004}, zbl = {1165.62330}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2004_24_2_a3/} }
TY - JOUR AU - Ceranka, Bronisław AU - Graczyk, Małgorzata TI - Optimum chemical balance weighing designs with diagonal variance-covariance matrix of errors JO - Discussiones Mathematicae. Probability and Statistics PY - 2004 SP - 215 EP - 232 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2004_24_2_a3/ LA - en ID - DMPS_2004_24_2_a3 ER -
%0 Journal Article %A Ceranka, Bronisław %A Graczyk, Małgorzata %T Optimum chemical balance weighing designs with diagonal variance-covariance matrix of errors %J Discussiones Mathematicae. Probability and Statistics %D 2004 %P 215-232 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2004_24_2_a3/ %G en %F DMPS_2004_24_2_a3
Ceranka, Bronisław; Graczyk, Małgorzata. Optimum chemical balance weighing designs with diagonal variance-covariance matrix of errors. Discussiones Mathematicae. Probability and Statistics, Tome 24 (2004) no. 2, pp. 215-232. http://geodesic.mathdoc.fr/item/DMPS_2004_24_2_a3/
[1] K.S. Banerjee, Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics. Marcel Dekker Inc., New York 1975.
[2] B. Ceranka and M. Graczyk, Optimum chemical balance weighing designs under the restriction on weighings, Discussiones Mathematicae - Probability and Statistics 21 (2001), 111-120.
[3] B. Ceranka and K. Katulska, Chemical balance weighing designs under the restriction on the number of objects placed on the pans, Tatra Mt. Math. Publ. 17 (1999), 141-148.
[4] B. Ceranka, K. Katulska and D. Mizera, The application of ternary balanced block designs to chemical balance weighing designs, Discussiones Mathematicae - Algebra and Stochastic Methods 18 (1998), 179-185.
[5] H. Hotelling, Some improvements in weighing and other experimental techniques, Ann. Math. Stat. 15 (1944), 297-305.
[6] C. Huang, Balanced bipartite weighing designs, Journal of Combinatorial Theory (A) 21 (1976), 20-34.
[7] K. Katulska, Optimum chemical balance weighing designs with non - homegeneity of the variances of errors, J. Japan Statist. Soc. 19 (1989), 95-101.
[8] J.W. Linnik, Metoda Najmniejszych Kwadratów i Teoria Opracowywania Obserwacji, PWN, Warszawa 1962.
[9] D. Raghavarao, Constructions and Combinatorial Problems in Design ofExperiments, John Wiley Inc., New York 1971.
[10] C.R. Rao, Linear Statistical Inference and its Applications, Second Edition, John Wiley and Sons, Inc., New York 1973.
[11] M.N. Swamy, Use of balanced bipartite weighing designs as chemical balance designs, Comm. Statist. Theory Methods 11 (1982), 769-785.