Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2004_24_1_a6, author = {Cali\'nski, Tadeusz and Kageyama, Sanpei}, title = {A unified terminology in block designs}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {127--145}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2004}, zbl = {1063.62107}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2004_24_1_a6/} }
TY - JOUR AU - Caliński, Tadeusz AU - Kageyama, Sanpei TI - A unified terminology in block designs JO - Discussiones Mathematicae. Probability and Statistics PY - 2004 SP - 127 EP - 145 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2004_24_1_a6/ LA - en ID - DMPS_2004_24_1_a6 ER -
Caliński, Tadeusz; Kageyama, Sanpei. A unified terminology in block designs. Discussiones Mathematicae. Probability and Statistics, Tome 24 (2004) no. 1, pp. 127-145. http://geodesic.mathdoc.fr/item/DMPS_2004_24_1_a6/
[1] R.A. Bailey, H. Monod and J.P. Morgan, Construction and optimality of affine-resolvable designs, Biometrika 82 (1995), 187-200.
[2] T. Caliński, On some desirable patterns in block designs (with discussion), Biometrics 27 (1971), 275-292.
[3] T. Caliński and S. Kageyama, Block designs: Their combinatorial and statistical properties, S. Ghosh and C.R. Rao (eds.), Handbook of Statistics, Volume 13: Design and Analysis of Experiments, Elsevier Science, Amsterdam (1996), 809-873.
[4] T. Caliński and S. Kageyama, Block Designs: A Randomization Approach, Volume I: Analysis, Lecture Notes in Statistics, Volume 150, Springer, New York 2000.
[5] T. Caliński and S. Kageyama, Block Designs: A Randomization Approach, Volume II: Design, Lecture Notes in Statistics, Volume 170, Springer, New York 2003.
[6] B. Ceranka and Z. Kaczmarek, Testing genetic parameters in the mixed model of triallel analysis, A.C. Atkinson, L. Pronzato and H.P. Wynn (eds.), MODA 5 - Advances in Model-Oriented Data Analysis and Experimental Design, Physica-Verlag, Heidelberg (1998), 177-185.
[7] B. Ceranka and S. Mejza, A new proposal for classification of block designs, Studia Scient. Mathematicarum Hungarica 15 (1980), 79-82.
[8] J.A. John, Cyclic Designs, Chapman and Hall, London 1987.
[9] R.M. Jones, On a property of incomplete blocks, J. Roy Statist. Soc. B 21 (1959), 172-179.
[10] H.D. Patterson and V. Silvey, Statutory and recommended list trials of crop varieties in the United Kingdom, J. Roy. Statist. Soc. Ser. A 143 (1980), 219-252.
[11] S.C. Pearce, Supplemented balance, Biometrika 47 (1960), 263-271.
[12] S.C. Pearce, T. Caliński and T.F. de C. Marshall, The basic contrasts of an experimental design with special reference to the analysis of data, Biometrika 61 (1974), 449-460.
[13] P.D. Puri and A.K. Nigam, On patterns of efficiency balanced designs, J. Roy. Statist. Soc. B 37 (1975), 457-458.
[14] P.D. Puri and A.K. Nigam, A note on efficiency balanced designs, Sankhy¯a B 37 (1975), 457-460.
[15] P.D. Puri and A.K. Nigam, Partially efficiency balanced designs, Commun. Statist. -Theor. Meth. A 6 (1977), 753-771.
[16] D. Raghavarao, Constructions and Combinatorial Problems in Design of Experiments, John Wiley, New York 1971.
[17] G.M. Saha, On Calinski's patterns in block designs, Sankhy¯a B 38 (1976), 383-392.
[18] K.R. Shah, Use of inter-block information to obtain uniformly better estimates, Ann. Math. Statist. 35 (1964), 1064-1078.
[19] E.R. Williams, Efficiency-balanced designs, Biometrika 62 (1975), 686-689.
[20] F. Yates, Incomplete randomized blocks, Ann. Eugen. 7 (1936), 121-140.