Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2004_24_1_a1, author = {Mohan, R. and Kageyama, Sanpei and Nair, M.}, title = {On a characterization of symmetric balanced incomplete block designs}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {41--58}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2004}, zbl = {1050.05017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2004_24_1_a1/} }
TY - JOUR AU - Mohan, R. AU - Kageyama, Sanpei AU - Nair, M. TI - On a characterization of symmetric balanced incomplete block designs JO - Discussiones Mathematicae. Probability and Statistics PY - 2004 SP - 41 EP - 58 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2004_24_1_a1/ LA - en ID - DMPS_2004_24_1_a1 ER -
%0 Journal Article %A Mohan, R. %A Kageyama, Sanpei %A Nair, M. %T On a characterization of symmetric balanced incomplete block designs %J Discussiones Mathematicae. Probability and Statistics %D 2004 %P 41-58 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2004_24_1_a1/ %G en %F DMPS_2004_24_1_a1
Mohan, R.; Kageyama, Sanpei; Nair, M. On a characterization of symmetric balanced incomplete block designs. Discussiones Mathematicae. Probability and Statistics, Tome 24 (2004) no. 1, pp. 41-58. http://geodesic.mathdoc.fr/item/DMPS_2004_24_1_a1/
[1] S. Chowla and H.J. Ryser, Combinatorial problems, Can. J. Math. 2 (1950), 93-99.
[2] R.J. Collins, Constructing BIB designs with computer, Ars Combin. 2 (1976), 285-303.
[3] J.D. Fanning, A family of symmetric designs, Discrete Math. 146 (1995), 307-312.
[4] Q.M. Hussain, Symmetrical incomplete block designs with l = 2,k = 8 or 9, Bull. Calcutta Math. Soc. 37 (1945), 115-123.
[5] Y.J. Ionin, A technique for constructing symmetric designs, Designs, Codes and Cryptography 14 (1998), 147-158.
[6] Y.J. Ionin, Building symmetric designs with building sets, Designs, Codes and Cryptography 17 (1999), 159-175.
[7] S. Kageyama, Note on Takeuchi's table of difference sets generating balanced incomplete block designs, Int. Stat. Rev. 40, (1972), 275-276.
[8] S. Kageyama and R.N. Mohan, On m-resolvable BIB designs, Discrete Math. 45 (1983), 113-121.
[9] R. Mathon and A. Rosa, 2-(v, k, l) designs of small order, The CRC Handbook of Combinatorial Designs (ed. Colbourn, C. J. and Dinitz, J. H.). CRC Press, New York, (1996), 3-41.
[10] R.N. Mohan, A note on the construction of certain BIB designs, Discrete Math. 29 (1980), 209-211.
[11] R.N. Mohan, On an Mn-matrix, Informes de Matematica (IMPA-Preprint), Series B-104, Junho/96, Instituto de Matematica Pura E Aplicada, Rio de Janeiro, Brazil 1996.
[12] R.N. Mohan, A new series of affine m-resolvable (d+1)-associate class PBIB designs, Indian J. Pure and Appl. Math. 30 (1999), 106-111.
[13] D. Raghavarao, Constructions and Combinatorial Problems in Design of Experiments, Wiley, New York 1971.
[14] S.S. Shrikhande, The impossibility of certain symmetrical balanced incomplete designs, Ann. Math. Statist. 21 (1950), 106-111.
[15] S.S. Shrikhande and N.K. Singh, On a method of constructing symmetrical balanced incomplete block designs, Sankhy¯a A24 (1962), 25-32.
[16] S.S. Shrikhande and D. Raghavarao, A method of construction of incomplete block designs, Sankhy¯a A25 (1963), 399-402.
[17] G. Szekers, A new class of symmetrical block designs, J. Combin. Theory 6 (1969), 219-221.
[18] K. Takeuchi, A table of difference sets generating balanced incomplete block designs, Rev. Inst. Internat. Statist. 30 (1962), 361-366.
[19] N.H. Zaidi, Symmetrical balanced incomplete block designs with l = 2 and k = 9, Bull. Calcutta Math. Soc. 55 (1963), 163-167.