Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2002_22_1-2_a6, author = {Witkovsk\'y, Viktor}, title = {On the {Behrens-Fisher} distribution and its generalization to the pairwise comparisons}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {73--104}, publisher = {mathdoc}, volume = {22}, number = {1-2}, year = {2002}, zbl = {1037.62066}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2002_22_1-2_a6/} }
TY - JOUR AU - Witkovský, Viktor TI - On the Behrens-Fisher distribution and its generalization to the pairwise comparisons JO - Discussiones Mathematicae. Probability and Statistics PY - 2002 SP - 73 EP - 104 VL - 22 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2002_22_1-2_a6/ LA - en ID - DMPS_2002_22_1-2_a6 ER -
%0 Journal Article %A Witkovský, Viktor %T On the Behrens-Fisher distribution and its generalization to the pairwise comparisons %J Discussiones Mathematicae. Probability and Statistics %D 2002 %P 73-104 %V 22 %N 1-2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMPS_2002_22_1-2_a6/ %G en %F DMPS_2002_22_1-2_a6
Witkovský, Viktor. On the Behrens-Fisher distribution and its generalization to the pairwise comparisons. Discussiones Mathematicae. Probability and Statistics, Tome 22 (2002) no. 1-2, pp. 73-104. http://geodesic.mathdoc.fr/item/DMPS_2002_22_1-2_a6/
[1] D.E. Amos, A portable package for bessel functions of a complex argument and nonnegative order, ACM Transactions on Mathematical Software 12 (1986), 265-273.
[2] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Dover, New York 1965.
[3] G. Bacová, A. Gábelová, O. Babusíková and D. Slamenová, The single cell gel electrophoresis: A potential tool for DNA analysis of the patients with hematological maligancies, Neoplasma 45 (1998), 349-359.
[4] G.A. Barnard, Comparing the means of two independent samples, Applied Statistics 33 (1984), 266-271.
[5] R.A. Fisher, The fiducial argument in statistical inference, Annals of Eugenics 6 (1935), 391-398.
[6] R.A. Fisher and F. Yates, Statistical Tables, Longman, London 1975.
[7] C.W. Dunnett, Pairwise multiple comparisons in the unequal variance case, Journal of the American Statistical Association 75 (1980), 796-800.
[8] J. Gil-Pelaez, Note on the inversion theorem, Biometrika 38 (1951), 481-482.
[9] A.F.S. Lee and J. Gurland, Size and power of tests of equality of two normal populations with unequal variances, Journal of the American Statistical Association 70 (1975), 933-941.
[10] X.-L. Meng, Posterior predictive p-values, Annals of Statistics 22 (1994), 1142-1160.
[11] G.K. Robinson, Properties of Student t and of the Behrens-Fisher solution to the two means problem, Annals of Statistics 4 (1976), 963-971.
[12] G.K. Robinson, Behrens-Fisher problem, Encyclopedia of Statistical Sciences, 9 volumes plus Supplement, Wiley, New York, (1982), 205-209.
[13] H. Scheffé, Practical solutions of the Behrens-Fisher problem, Journal of the American Statistical Association 65 (1970), 1501-1508.
[14] K.W. Tsui, and S. Weerahandi, Generalized p values in significance testing of hypotheses in the presence of nuisance parameters, Journal of the American Statistical Association 84 (1989), 602-607.
[15] G.A. Walker and J.G. Saw, The distribution of linear combinations of t variables, Journal of the American Statistical Association 73 (1978), 876-878.
[16] S. Weerahandi, ANOVA under unequal error variances, Biometrics 51 (1995a), 589-599.
[17] S. Weerahandi, Exact Statistical Methods for Data Analysis, Springer-Verlag, New York 1995b.
[18] B.L. Welch, The generalization of `Student's' problem when several different population variances are involved, Biometrika 34 (1947), 28-35.
[19] V. Witkovský, On the exact computation of the density and of the quantiles of linear combinations of t and F random variables, Journal of Statistical Planning and Inference 94 (2001a), 1-13.
[20] V. Witkovský, Computing the distribution of a linear combination of inverted gamma variables, Kybernetika 37 (2001b), 79-90.
[21] V. Witkovský, Exact distribution of positive linear combinations of inverted chi-square random variables with odd degrees of freedom, Submitted to Statistics ; Probability Letters 2001c.