Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2001_21_2_a0, author = {Mexia, Jo\~ao and Real, Pedro}, title = {Strong law of large numbers for additive extremum estimators}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {81--88}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2001}, zbl = {1013.62075}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2001_21_2_a0/} }
TY - JOUR AU - Mexia, João AU - Real, Pedro TI - Strong law of large numbers for additive extremum estimators JO - Discussiones Mathematicae. Probability and Statistics PY - 2001 SP - 81 EP - 88 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2001_21_2_a0/ LA - en ID - DMPS_2001_21_2_a0 ER -
Mexia, João; Real, Pedro. Strong law of large numbers for additive extremum estimators. Discussiones Mathematicae. Probability and Statistics, Tome 21 (2001) no. 2, pp. 81-88. http://geodesic.mathdoc.fr/item/DMPS_2001_21_2_a0/
[1] N. Bac Van, Strong convergence of least squares estimates in polynomial regression with random explanatory variables, Acta Mathematica Vietnamica 23 (2) (1998), 195-205.
[2] N. Bac Van, Strong convergence of least squares estimates in polynomial regression with random explanatory variables, Acta Mathematica Vietnamica 19 (1) (1994), 111-137.
[3] J. Galambos, Advanced Probability Theory, Marcel Dekker 1988.
[4] J.T. Mexia and P.C. Real, Extension of Kolmogorov's strong law to multiple regression, 23rd European Meeting of Statisticians, Funchal (Madeira Island), August 13-18 2001, Revista de Estatística, 2 Quadrimestre de 2001, 277-278.
[5] D. Williams, Probability with Martingales, Cambridge Mathematical Textbooks 1991.
[6] S. Zacks, The Theory of Statistical Inference, John Wiley 1971.