Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2001_21_1_a3, author = {Mexia, Joao and Dias, Gerberto}, title = {F-tests for generalized linear hypotheses in subnormal models}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {49--62}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2001}, zbl = {0984.62041}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2001_21_1_a3/} }
TY - JOUR AU - Mexia, Joao AU - Dias, Gerberto TI - F-tests for generalized linear hypotheses in subnormal models JO - Discussiones Mathematicae. Probability and Statistics PY - 2001 SP - 49 EP - 62 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2001_21_1_a3/ LA - en ID - DMPS_2001_21_1_a3 ER -
Mexia, Joao; Dias, Gerberto. F-tests for generalized linear hypotheses in subnormal models. Discussiones Mathematicae. Probability and Statistics, Tome 21 (2001) no. 1, pp. 49-62. http://geodesic.mathdoc.fr/item/DMPS_2001_21_1_a3/
[1] D.B. A and J.B. B, Influence curve of an F-tests based on robustweights, American Statistical Association, Proceedings of the Statistical Computing Section, Alexandria 1992.
[2] M. Fisz, Probability Theory and Mathematical Statistics, John Wiley Sons, 3rd Edition New York 1963.
[3] E.L. L, Testing Statistical Hypothesis, John Wiley Sons, New York 1959.
[4] J.T. M, Controlled Heterocedasticity, Quotient Vector Spaces and F-tests for Hypothesis on Mean Vectors, Trabalhos de Investigaçao, FCT/UNL,Lisbon 1989.
[5] A. M and R. Z, Testing Hypothesis for Linear Functions of Parameters in Mixed Linear Models, Tatra Mt. Math. Publ. 17 (1999), 103-110.
[6] J.N. Rao, B. S, and K. Yue, Generalized least squares F-tests in Regression Analysis with two-stage cluster samples, JASA. Vol. 88, No 424, (1993).
[7] C.R. Rao, Advanced Methods on Biometric Research, John Wiley Sons New York 1952.
[8] H. S, The Analysis of Variance, John Wiley Sons. New York 1959.
[9] G.A.F. S, The Linear Hypothesis: a General Theory, 2nd (ed), Charles Griffin Co. London 1980.
[10] M.J. S, Robust tests of inequality constraints and one-sided hypothesis in the linear model, Biometrika, Vol. 73, No 3, (1992).
[11] J. T de O, Statistical Choice of Univariate Extreme Models, Statistical Distributions in Scientific Works, C. Tuillie et al. (eds), Reiche, Dordrécht, Vol. 6 (1980), 367-382.
[12] J. T de O, Decision and Modelling in Extremes, Some Recent Advances in Statistics, J. Tiago de Oliveira B. Epstein (eds), Academic Press, New York (1982), 101-110.
[13] R.R. V, and J.T. M, Convergence of matrices and subspaces with statistical applications, Anais do Centro de Matemática e Aplicaçoes, I (2) (1995).