F-tests for generalized linear hypotheses in subnormal models
Discussiones Mathematicae. Probability and Statistics, Tome 21 (2001) no. 1, pp. 49-62.

Voir la notice de l'article provenant de la source Library of Science

When the measurement errors may be assumed to be normal and independent from what is measured a subnormal model may be used. We define a linear and generalized linear hypotheses for these models, and derive F-tests for them. These tests are shown to be UMP for linear hypotheses as well as strictly unbiased and strongly consistent for these hypotheses. It is also shown that the F-tests are invariant for regular transformations, possess structural stability and are almost strongly consistent for generalized linear hypothesis. An application to a mixed model studied by Michalskyi and Zmyślony is shown.
Keywords: F-tests, subnormal models, mixed models, invariance, UMP tests, third type error
@article{DMPS_2001_21_1_a3,
     author = {Mexia, Joao and Dias, Gerberto},
     title = {F-tests for generalized linear hypotheses in subnormal models},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {49--62},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2001},
     zbl = {0984.62041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2001_21_1_a3/}
}
TY  - JOUR
AU  - Mexia, Joao
AU  - Dias, Gerberto
TI  - F-tests for generalized linear hypotheses in subnormal models
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2001
SP  - 49
EP  - 62
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2001_21_1_a3/
LA  - en
ID  - DMPS_2001_21_1_a3
ER  - 
%0 Journal Article
%A Mexia, Joao
%A Dias, Gerberto
%T F-tests for generalized linear hypotheses in subnormal models
%J Discussiones Mathematicae. Probability and Statistics
%D 2001
%P 49-62
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2001_21_1_a3/
%G en
%F DMPS_2001_21_1_a3
Mexia, Joao; Dias, Gerberto. F-tests for generalized linear hypotheses in subnormal models. Discussiones Mathematicae. Probability and Statistics, Tome 21 (2001) no. 1, pp. 49-62. http://geodesic.mathdoc.fr/item/DMPS_2001_21_1_a3/

[1] D.B. A and J.B. B, Influence curve of an F-tests based on robustweights, American Statistical Association, Proceedings of the Statistical Computing Section, Alexandria 1992.

[2] M. Fisz, Probability Theory and Mathematical Statistics, John Wiley Sons, 3rd Edition New York 1963.

[3] E.L. L, Testing Statistical Hypothesis, John Wiley Sons, New York 1959.

[4] J.T. M, Controlled Heterocedasticity, Quotient Vector Spaces and F-tests for Hypothesis on Mean Vectors, Trabalhos de Investigaçao, FCT/UNL,Lisbon 1989.

[5] A. M and R. Z, Testing Hypothesis for Linear Functions of Parameters in Mixed Linear Models, Tatra Mt. Math. Publ. 17 (1999), 103-110.

[6] J.N. Rao, B. S, and K. Yue, Generalized least squares F-tests in Regression Analysis with two-stage cluster samples, JASA. Vol. 88, No 424, (1993).

[7] C.R. Rao, Advanced Methods on Biometric Research, John Wiley Sons New York 1952.

[8] H. S, The Analysis of Variance, John Wiley Sons. New York 1959.

[9] G.A.F. S, The Linear Hypothesis: a General Theory, 2nd (ed), Charles Griffin Co. London 1980.

[10] M.J. S, Robust tests of inequality constraints and one-sided hypothesis in the linear model, Biometrika, Vol. 73, No 3, (1992).

[11] J. T de O, Statistical Choice of Univariate Extreme Models, Statistical Distributions in Scientific Works, C. Tuillie et al. (eds), Reiche, Dordrécht, Vol. 6 (1980), 367-382.

[12] J. T de O, Decision and Modelling in Extremes, Some Recent Advances in Statistics, J. Tiago de Oliveira B. Epstein (eds), Academic Press, New York (1982), 101-110.

[13] R.R. V, and J.T. M, Convergence of matrices and subspaces with statistical applications, Anais do Centro de Matemática e Aplicaçoes, I (2) (1995).