How to deal with regression models with a weak nonlinearity
Discussiones Mathematicae. Probability and Statistics, Tome 21 (2001) no. 1, pp. 21-48.

Voir la notice de l'article provenant de la source Library of Science

If a nonlinear regression model is linearized in a non-sufficient small neighbourhood of the actual parameter, then all statistical inferences may be deteriorated. Some criteria how to recognize this are already developed. The aim of the paper is to demonstrate the behaviour of the program for utilization of these criteria.
Keywords: nonlinear regression model, criteria of linearization, demo program
@article{DMPS_2001_21_1_a2,
     author = {Tesar{\'\i}kov\'a, Eva and Kub\'a\v{c}ek, Lubom{\'\i}r},
     title = {How to deal with regression models with a weak nonlinearity},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {21--48},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2001},
     zbl = {0984.62044},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2001_21_1_a2/}
}
TY  - JOUR
AU  - Tesaríková, Eva
AU  - Kubáček, Lubomír
TI  - How to deal with regression models with a weak nonlinearity
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2001
SP  - 21
EP  - 48
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2001_21_1_a2/
LA  - en
ID  - DMPS_2001_21_1_a2
ER  - 
%0 Journal Article
%A Tesaríková, Eva
%A Kubáček, Lubomír
%T How to deal with regression models with a weak nonlinearity
%J Discussiones Mathematicae. Probability and Statistics
%D 2001
%P 21-48
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2001_21_1_a2/
%G en
%F DMPS_2001_21_1_a2
Tesaríková, Eva; Kubáček, Lubomír. How to deal with regression models with a weak nonlinearity. Discussiones Mathematicae. Probability and Statistics, Tome 21 (2001) no. 1, pp. 21-48. http://geodesic.mathdoc.fr/item/DMPS_2001_21_1_a2/

[1] D.M. Bates and D.G. Watts, Relative curvature measure of nonlinearity (with discussion), Journal of the Royal Statistical Society, Ser. B. 42 (1), 1980, 1-25.

[2] D.M. Bates and D.G. Watts, Nonlinear Regression Analysis and Its Applications, J. Wiley, N. York, Chichester, Brisbane, Toronto, Singapure 1988.

[3] A. Jencová, A comparison of linearization and quadratization domains, Applications of Mathematics 42 (1997), 279-291.

[4] L. Kubáček, On a linearization of regression models, Applications of Mathematics 40 (1995), 61-78.

[5] L. Kubáček, Models with a low nonlinearity, Tatra Mountains Math. Publ. 7 (1996), 149-155.

[6] L. Kubáček, Quadratic regression models Math. Slovaca 46 (1996), 111-126.

[7] L. Kubáček and L. Kubácková, Regression Models with a weak Nonlinearity, Technical Reports, Department of Geodesy, University of Stuttgart (1998), 1-67.

[8] A. Pázman, Nonlinear Statistical Models, Kluwer Academic Publishers, Dordrecht-Boston-London 1993.