Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2001_21_1_a2, author = {Tesar{\'\i}kov\'a, Eva and Kub\'a\v{c}ek, Lubom{\'\i}r}, title = {How to deal with regression models with a weak nonlinearity}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {21--48}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2001}, zbl = {0984.62044}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMPS_2001_21_1_a2/} }
TY - JOUR AU - Tesaríková, Eva AU - Kubáček, Lubomír TI - How to deal with regression models with a weak nonlinearity JO - Discussiones Mathematicae. Probability and Statistics PY - 2001 SP - 21 EP - 48 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMPS_2001_21_1_a2/ LA - en ID - DMPS_2001_21_1_a2 ER -
Tesaríková, Eva; Kubáček, Lubomír. How to deal with regression models with a weak nonlinearity. Discussiones Mathematicae. Probability and Statistics, Tome 21 (2001) no. 1, pp. 21-48. http://geodesic.mathdoc.fr/item/DMPS_2001_21_1_a2/
[1] D.M. Bates and D.G. Watts, Relative curvature measure of nonlinearity (with discussion), Journal of the Royal Statistical Society, Ser. B. 42 (1), 1980, 1-25.
[2] D.M. Bates and D.G. Watts, Nonlinear Regression Analysis and Its Applications, J. Wiley, N. York, Chichester, Brisbane, Toronto, Singapure 1988.
[3] A. Jencová, A comparison of linearization and quadratization domains, Applications of Mathematics 42 (1997), 279-291.
[4] L. Kubáček, On a linearization of regression models, Applications of Mathematics 40 (1995), 61-78.
[5] L. Kubáček, Models with a low nonlinearity, Tatra Mountains Math. Publ. 7 (1996), 149-155.
[6] L. Kubáček, Quadratic regression models Math. Slovaca 46 (1996), 111-126.
[7] L. Kubáček and L. Kubácková, Regression Models with a weak Nonlinearity, Technical Reports, Department of Geodesy, University of Stuttgart (1998), 1-67.
[8] A. Pázman, Nonlinear Statistical Models, Kluwer Academic Publishers, Dordrecht-Boston-London 1993.