On risk reserve under distribution constraints
Discussiones Mathematicae. Probability and Statistics, Tome 20 (2000) no. 2, pp. 249-260.

Voir la notice de l'article provenant de la source Library of Science

The purpose of this work is a study of the following insurance reserve model:
Keywords: martingales, stochastic equations, reserve process, Girsanov`s theorem, viability
@article{DMPS_2000_20_2_a6,
     author = {Michta, Mariusz},
     title = {On risk reserve under distribution constraints},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {249--260},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2000},
     zbl = {0984.60048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2000_20_2_a6/}
}
TY  - JOUR
AU  - Michta, Mariusz
TI  - On risk reserve under distribution constraints
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2000
SP  - 249
EP  - 260
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2000_20_2_a6/
LA  - en
ID  - DMPS_2000_20_2_a6
ER  - 
%0 Journal Article
%A Michta, Mariusz
%T On risk reserve under distribution constraints
%J Discussiones Mathematicae. Probability and Statistics
%D 2000
%P 249-260
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2000_20_2_a6/
%G en
%F DMPS_2000_20_2_a6
Michta, Mariusz. On risk reserve under distribution constraints. Discussiones Mathematicae. Probability and Statistics, Tome 20 (2000) no. 2, pp. 249-260. http://geodesic.mathdoc.fr/item/DMPS_2000_20_2_a6/

[1] J.P. Aubin and G. Da Prato, Stochastic viability and invariance, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17 (1990), 595-613.

[2] J.P. Aubin and G. Da Prato, The viability theorem for stochastic differential inclusions, Stochastic Anal. Appl. 16 (1) (1998), 1-15.

[3] R. Bergmann and D. Stoyan, On exponential bounds for the waiting time distribution function in GI/G/1, Journal of Applied Probability 13 (1976), 411-417.

[4] P. Billingsley, Convergence of Probability Measures, J. Wiley and Sons, New York and London 1968.

[5] F. Dufresne and H.U. Gerber, Risk theory for the compound Poisson process that is perturbated by diffiusion, Insurance: Mathematics and Economics 10 (1991), 51-59.

[6] S. Gauthier and L. Thibault, Viability for constrained stochastic differential equations, Differential and Integral Equations 6 (6) 1395-1414.

[7] I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer, Berlin-New York 1988.

[8] M. Kisielewicz, Viability theorems for stochastic inclusions, Discuss. Math. Diff. Incl. 15 (1) (1995), 61-75.

[9] T. Kurtz and Ph. Protter, Weak limit theorems for stochastic integrals and stochastic differential equations, Ann. Probab. 19 (3) (1991), 1035-1070.

[10] F. Lundberg, I, Approximerad Framställning av Sannonlikhetsfunktionen, II, A°terförsäkering av Kollektivresker, Almqvist and Wiksell, Upsala 1903.

[11] L. Mazliak, A note on weak viability for controlled diffusion, Prepublications du Lab. de Probab. Universite de Paris 6, 7, 513 (1999).

[12] M. Michta, A note on viability under distribution constrains, Discuss. Math. Algebra and Stochastic Methods 18 (2) (1998), 215-225.

[13] S.S. Petersen, Calculation of ruin probabilities when the premium depends on the current reserve, Scand. Act. J. (1990), 147-159.

[14] Ph. Protter, A connection between the expansion of filtrations and Girsanov`s theorem, Stochastic partial differential equations, Lecture Notes in Math. 1930 Springer, Berlin-New York, (1989), 221-224.

[15] Ph. Protter, Stochastic Integration and Differential Equations, Springer, Berlin-New York 1990.

[16] M. Yor, Grossissement de filtrations et absolue continuite de noyaux, Springer, Berlin-New York, Lecture Notes in Math. 1118 (1985), 6-15.