Semitotal forcing in claw-free cubic graphs
Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 4, pp. 1373-1393

Voir la notice de l'article provenant de la source Library of Science

For an isolate-free graph G=(V(G),E(G)), a set S⊆ V(G) is called a semitotal forcing set of G if it is a forcing set (or a zero forcing set) of G and every vertex in S is within distance 2 of another vertex of S. The semitotal forcing number F_t2(G) is the minimum cardinality of a semitotal forcing set in G. In this paper, we prove that if G K_4 is a connected claw-free cubic graph of order n, then F_t2(G)≤38n+1. The graphs achieving equality in this bound are characterized, an infinite set of graphs.
Keywords: semitotal forcing number, claw-free, cubic
@article{DMGT_2024_44_4_a8,
     author = {Liang, Yi-Ping and Chen, Jie and Xu, Shou-Jun},
     title = {Semitotal forcing in claw-free cubic graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1373--1393},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a8/}
}
TY  - JOUR
AU  - Liang, Yi-Ping
AU  - Chen, Jie
AU  - Xu, Shou-Jun
TI  - Semitotal forcing in claw-free cubic graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2024
SP  - 1373
EP  - 1393
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a8/
LA  - en
ID  - DMGT_2024_44_4_a8
ER  - 
%0 Journal Article
%A Liang, Yi-Ping
%A Chen, Jie
%A Xu, Shou-Jun
%T Semitotal forcing in claw-free cubic graphs
%J Discussiones Mathematicae. Graph Theory
%D 2024
%P 1373-1393
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a8/
%G en
%F DMGT_2024_44_4_a8
Liang, Yi-Ping; Chen, Jie; Xu, Shou-Jun. Semitotal forcing in claw-free cubic graphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 4, pp. 1373-1393. http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a8/