Strong chromatic index of claw-free graphs with edge weight seven
Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 4, pp. 1311-1325

Voir la notice de l'article provenant de la source Library of Science

Let G be a graph and k a positive integer. A strong k-edge-coloring of G is a mapping ϕ: E(G)→{1,2,...,k} such that for any two edges e and e^' that are either adjacent to each other or adjacent to a common edge, ϕ(e)ϕ(e^'). The strong chromatic index of G is the minimum integer k such that G has a strong k-edge-coloring. The edge weight of G is defined to be max{d(u)+d(v):uv∈ E(G)}, where d(v) denotes the degree of v in G. In this paper, we prove that every claw-free graph with edge weight at most 7 has strong chromatic index at most 9, which is sharp.
Keywords: strong edge coloring, strong chromatic index, claw-free graph, edge weight
@article{DMGT_2024_44_4_a4,
     author = {Lin, Yuquan and Lin, Wensong},
     title = {Strong chromatic index of claw-free graphs with edge weight seven},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1311--1325},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a4/}
}
TY  - JOUR
AU  - Lin, Yuquan
AU  - Lin, Wensong
TI  - Strong chromatic index of claw-free graphs with edge weight seven
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2024
SP  - 1311
EP  - 1325
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a4/
LA  - en
ID  - DMGT_2024_44_4_a4
ER  - 
%0 Journal Article
%A Lin, Yuquan
%A Lin, Wensong
%T Strong chromatic index of claw-free graphs with edge weight seven
%J Discussiones Mathematicae. Graph Theory
%D 2024
%P 1311-1325
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a4/
%G en
%F DMGT_2024_44_4_a4
Lin, Yuquan; Lin, Wensong. Strong chromatic index of claw-free graphs with edge weight seven. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 4, pp. 1311-1325. http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a4/