@article{DMGT_2024_44_3_a2,
author = {Bensmail, Julien and Fioravantes, Foivos},
title = {On proper $2$-labellings distinguishing by sums, multisets or products},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {863--878},
year = {2024},
volume = {44},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a2/}
}
TY - JOUR AU - Bensmail, Julien AU - Fioravantes, Foivos TI - On proper $2$-labellings distinguishing by sums, multisets or products JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 863 EP - 878 VL - 44 IS - 3 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a2/ LA - en ID - DMGT_2024_44_3_a2 ER -
Bensmail, Julien; Fioravantes, Foivos. On proper $2$-labellings distinguishing by sums, multisets or products. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 3, pp. 863-878. http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a2/
[1] L. Addario-Berry, R.E.L. Aldred, K. Dalal and B.A. Reed, Vertex colouring edge partitions, J. Combin. Theory Ser. B 94 (2005) 237–244. https://doi.org/10.1016/j.jctb.2005.01.001
[2] O. Baudon, J. Bensmail, J. Przybyło and M. Woźniak, On decomposing regular graphs into locally irregular subgraphs, European J. Combin. 49 (2015) 90–104. https://doi.org/10.1016/j.ejc.2015.02.031
[3] J. Bensmail, F. Fioravantes and F. Mc Inerney, On the role of 3s for the 1-2-3 Conjecture, Theoret. Comput. Sci. 892 (2021) 238–257. https://doi.org/10.1016/j.tcs.2021.09.023
[4] J. Bensmail, F. Fioravantes, F. Mc Inerney and N. Nisse, Further results on an equitable 1-2-3 Conjecture, Discrete Appl. Math. 297 (2021) 1–20. https://doi.org/10.1016/j.dam.2021.02.037
[5] J. Bensmail, H. Hocquard, D. Lajou and É. Sopena, Further evidence towards the multiplicative 1-2-3 Conjecture, Discrete Appl. Math. 307 (2022) 135–144. https://doi.org/10.1016/j.dam.2021.10.014
[6] J. Bensmail, H. Hocquard, D. Lajou and É. Sopena, A proof of the multiplicative 1 -2-3 Conjecture, in: Algorithms and Discrete Applied Mathematics, N. Balachandran and R.Inkulu (Ed(s)), (Lecture Notes in Comput. Sci. 13179 2022) 3–14. https://doi.org/10.1007/978-3-030-95018-7_1
[7] R.L. Brooks, On colouring the nodes of a network, Math. Proc. Cambridge Philos. Soc. 37(2) (1941) 194–197. https://doi.org/10.1017/S030500410002168X
[8] G.J. Chang, C. Lu, J. Wu and Q. Yu, Vertex-coloring edge-weightings of graphs, Taiwanese J. Math. 15 (2011) 1807–1813. https://doi.org/10.11650/twjm/1500406380
[9] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 197–210.
[10] A. Dehghan, A. Ahadi and M.-R. Sadeghi, Algorithmic complexity of proper labeling problems, Theoret. Comput. Sci. 495 (2013) 25–36. https://doi.org/10.1016/j.tcs.2013.05.027
[11] A. Dudek and D. Wajc, On the complexity of vertex-coloring edge-weightings, Discrete Math. Theor. Comput. Sci. 13(3) (2011) 45–50. https://doi.org/10.46298/dmtcs.548
[12] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2021) #DS6. https://doi.org/10.37236/27
[13] F. Havet, N. Paramaguru and R. Sampathkumar, Detection number of bipartite graphs and cubic graphs, Discrete Math. Theor. Comput. Sci. 16(3) (2014) 333–342. https://doi.org/10.46298/dmtcs.642
[14] M. Kalkowski, M. Karoński and F. Pfender, Vertex-coloring edge-weightings: towards the 1-2-3 Conjecture, J. Combin. Theory Ser. B 100 (2010) 347–349. https://doi.org/10.1016/j.jctb.2009.06.002
[15] M. Karoński, T. Łuczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory Ser. B 91 (2004) 151–157. https://doi.org/10.1016/j.jctb.2003.12.001
[16] A.G. Luiz, Graceful Labellings and Neighbour-Distinguishing Labellings of Graphs (Ph.D. Thesis, University of Campinas, 2018).
[17] K. Szabo Lyngsie, On neighbour sum-distinguishing {0,1}-edge-weightings of bipartite graphs, Discrete Math. Theor. Comput. Sci. 20(1) (2018) 21. https://doi.org/10.23638/DMTCS-20-1-21
[18] N. Paramaguru and R. Sampathkumar, Graphs with vertex-coloring and detectable 2-edge-weighting, AKCE Int. J. Graphs Comb. 13 (2016) 146–156. https://doi.org/10.1016/j.akcej.2016.06.008
[19] B. Seamone, The 1-2-3 Conjecture and related problems: a survey (2012). http://arxiv.org/abs/1211.5122
[20] J. Skowronek-Kaziów, Multiplicative vertex-colouring weightings of graphs, Inform. Process. Lett. 112(5) (2012) 191–194. https://doi.org/10.1016/j.ipl.2011.11.009
[21] C. Thomassen, Y. Wu and C.-Q. Zhang, The 3-flow conjecture, factors modulo k, and the 1-2-3-Conjecture, J. Combin. Theory Ser. B 121 (2016) 308–325. https://doi.org/10.1016/j.jctb.2016.06.010
[22] B. Vučković, Multi-set neighbor distinguishing 3-edge coloring, Discrete Math. 341 (2018) 820–824. https://doi.org/10.1016/j.disc.2017.12.001