@article{DMGT_2024_44_3_a12,
author = {Borodin, Oleg V. and Ivanova, Anna O.},
title = {All tight descriptions of faces in plane triangulations with minimum degree~4},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1037--1050},
year = {2024},
volume = {44},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a12/}
}
TY - JOUR AU - Borodin, Oleg V. AU - Ivanova, Anna O. TI - All tight descriptions of faces in plane triangulations with minimum degree~4 JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 1037 EP - 1050 VL - 44 IS - 3 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a12/ LA - en ID - DMGT_2024_44_3_a12 ER -
Borodin, Oleg V.; Ivanova, Anna O. All tight descriptions of faces in plane triangulations with minimum degree~4. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 3, pp. 1037-1050. http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a12/
[1] S.V. Avgustinovich and O.V. Borodin, Edge neighborhoods in normal maps, Diskretn. Anal. Issled. Oper. 2(3) (1989) 9–12, in Russian. Translation in: Mathematics and Its Applications 391 (1997) 17–22, A.D. Korshunov (Eds), Operations Research and Discrete Analysis (Springer Netherlands, 1997) 17–22. https://doi.org/10.1007/978-94-011-5678-3_3
[2] O.V. Borodin, Solution of problems of Kotzig and Grünbaum concerning the isolation of cycles in planar graphs, Mat. Zametki 46(5) (1989) 9–12, in Russian. Translation in: Math. Notes 46 (1989) 835–837. https://doi.org/10.1007/BF01139613
[3] O.V. Borodin, Minimal weight of face in plane triangulations without 4-vertices, Mat. Zametki 51 (1992) 16–19, in Russian. Translation in: Math. Notes 51 (1992) 11–13. https://doi.org/10.1007/BF01229428
[4] O.V. Borodin, Structural properties of planar maps with minimal degree 5, Math. Nachr. 158 (1992) 109–117. https://doi.org/10.1002/mana.19921580108
[5] O.V. Borodin, Triangulated 3-polytopes without faces of low weight, Discrete Math. 186 (1998) 281–285. https://doi.org/10.1016/S0012-365X(97)00240-9
[6] O.V. Borodin, An improvement of Lebesgues theorem on the structure of minor faces of 3-polytopes, Diskretn. Anal. Issled. Oper. 9(3) (2002) 29–39, in Russian.
[7] O.V. Borodin, Colorings of plane graphs: A survey, Discrete Math. 313 (2013) 517–539. https://doi.org/10.1016/j.disc.2012.11.011
[8] O.V. Borodin and A.O. Ivanova, Describing 3-faces in normal plane maps with minimum degree 4, Discrete Math. 313 (2013) 2841–2847. https://doi.org/10.1016/j.disc.2013.08.028
[9] O.V. Borodin and A.O. Ivanova, Combinatorial structure of faces in triangulations 3-polytopes with minimum degree 4, Sib. Math. J. 55 (2014) 12–18. https://doi.org/10.1134/S0037446614010030
[10] O.V. Borodin and A.O. Ivanova, Low edges in 3-polytopes, Discrete Math. 338 (2015) 2234–2241. https://doi.org/10.1016/j.disc.2015.05.018
[11] O.V. Borodin and A.O. Ivanova, Height of minor faces in triangle-free 3-polytopes, Sib. Math. J. 56 (2015) 783–788. https://doi.org/10.1134/S003744661505002X
[12] O.V. Borodin and A.O. Ivanova, The vertex-face weight of edges in 3-polytopes, Sib. Math. J. 56 (2015) 275–284. https://doi.org/10.1134/S003744661502007X
[13] O.V. Borodin and A.O. Ivanova, New results about the structure of plane graphs: A survey, in: AIP Conf. Proc. 1907 (2017) 030051. https://doi.org/10.1063/1.5012673
[14] O.V. Borodin and A.O. Ivanova, Describing faces in 3-polytopes with no vertices of degree from 5 to 7, Discrete Math. 342 (2019) 3208–3215. https://doi.org/10.1016/j.disc.2019.06.032
[15] O.V. Borodin and A.O. Ivanova, Another tight description of faces in plane triangulations with minimum degree 4, Discrete Math. 345(9) (2022) 112964. https://doi.org/10.1016/j.disc.2022.112964
[16] O.V. Borodin, A.O. Ivanova and A.V. Kostochka, Describing faces in plane triangulations, Discrete Math. 319 (2014) 47–61. https://doi.org/10.1016/j.disc.2013.11.021
[17] O.V. Borodin, A.O. Ivanova and E.I. Vasil'eva, A Steinberg-like approach to describing faces in 3-polytopes, Graphs Combin. 33 (2017) 63–71. https://doi.org/10.1007/s00373-016-1743-6
[18] O.V. Borodin and D.V. Loparev, Height of minor faces in plane normal maps, Diskretn. Anal. Issled. Oper. Ser. 5(4) (1998) 6–17, in Russian. Translation in: Discrete Appl. Math. 135 (2004) 31–39. https://doi.org/10.1016/S0166-218X(02)00292-5
[19] O.V. Borodin and D.R. Woodall, Weight of faces in plane maps, Mat. Zametki 64 (1998) 648–657, in Russian. Translation in: Math. Notes 64 (1998) 562–570. https://doi.org/10.1007/BF02316280
[20] B. Grünbaum, Polytopal graphs, in: Studies in Graph Theory, Part II, D.R. Fulkerson (Ed(s)), MMA Studies in Mathematics 12 (The Mathematical Association of America, Washington, D.C., 1975) 201–224.
[21] M. Horňák and S. Jendrol', Unavoidable set of face types for planar maps, Discuss. Math. Graph Theory 16 (1996) 123–141. https://doi.org/10.7151/dmgt.1028
[22] S. Jendrol', Triangles with restricted degrees of their boundary vertices in plane triangulations, Discrete Math. 196 (1999) 177–196. https://doi.org/10.1016/S0012-365X(98)00172-1
[23] S. Jendrol' and H.-J. Voss, Light subgraphs of graphs embedded in the plane–-A survey, Discrete Math. 313 (2013) 406–421. https://doi.org/10.1016/j.disc.2012.11.007
[24] A. Kotzig, From the theory of Euler's polyhedrons, Mat.-Fyz. Čas. 13 (1963) 20–31, in Russian.
[25] A. Kotzig, Extremal polyhedral graphs, Ann. New York Acad. Sci. 319 (1979) 569–570.
[26] H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl. 19 (1940) 27–43.
[27] B. Mohar, R. Škrekovski and H.-J. Voss, Light subgraphs in planar graphs of minimum degree 4 and edge-degree 9, J. Graph Theory 44 (2003) 261–295. https://doi.org/10.1002/jgt.10144
[28] O. Ore and M.D. Plummer, Cyclic coloration of plane graphs, in: Recent Progress in Combinatorics, W.T. Tutte (Ed(s)), (Academic Press, New York 1969) 287–293.
[29] M.D. Plummer, On the cyclic connectivity of planar graph, in: Graph Theory and Application, (Springer, Berlin 1972) 235–242.
[30] E. Steinitz, Polyeder und Raumeinteilungen, in: Encyklopädie der Mathematischen Wissenschaften, vol. 3 (Geometrie) AB 12 (1922) 1–139, in German.